Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x+y\right)^2-8\left(x+y\right)+12\)
\(=\left[\left(x+y\right)^2-8\left(x+y\right)+16\right]-4\)
\(=\left(x+y-4\right)^2-4\)
\(=\left(x+y\right)\left(x+y-8\right)\)
a/ \(=\left(x^2-1\right)^2+x\left(x^2-1\right)-2x\left(x^2-1\right)-2x^2\)
\(=\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)\)
\(=\left(x^2-2x-1\right)\left(x^2+x-1\right)\)
b/ \(=4\left(x^2+x+1\right)^2+4x\left(x^2+x+1\right)+x\left(x^2+x+1\right)+x^2\)
\(=4\left(x^2+x+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)\)
\(=\left(x^2+2x+1\right)\left(4x^2+5x+4\right)\)
\(=\left(x+1\right)^2\left(4x^2+5x+4\right)\)
c/ \(=\left(x^2-x+2\right)^4-x^2\left(x^2-x+2\right)^2-2x^2\left(x^2-x+2\right)^2+2x^4\)
\(=\left(x^2-x+2\right)^2\left[\left(x^2-x+2\right)^2-x^2\right]-2x^2\left[\left(x^2-x+2\right)^2-x^2\right]\)
\(=\left[\left(x^2-x+2\right)^2-x^2\right]\left[\left(x^2-x+2\right)^2-2x^2\right]\)
\(=\left(x^2-2x+2\right)\left(x^2+2\right)\left[\left(x^2-x+2\right)^2-2x^2\right]\)
d/
Bạn coi lại đề, với hệ số này ko phân tích được
e/
\(=10\left(x^2-2x+3\right)^4-10x^2\left(x^2-2x+3\right)^2+x^2\left(x^2-2x+3\right)^2-x^4\)
\(=10\left(x^2-2x+3\right)^2\left[\left(x^2-2x+3\right)^2-x^2\right]+x^2\left[\left(x^2-2x+3\right)^2-x^2\right]\)
\(=\left[\left(x^2-2x+3\right)^2-x^2\right]\left[10\left(x^2-2x+3\right)^2+x^2\right]\)
\(=\left(x^2-3x+3\right)\left(x^2-x+3\right)\left[10\left(x^2-2x+3\right)^2+x^2\right]\)
a) (x - 2)(x + 2)(x2 + 4) - (x2 - 3)(x2+3)
= (x2 - 4)(x2 + 4) - (x2 - 3)(x2+3)
= x4-16-x4+9
= -7
Rút gọn các phân thức:
a) \(\frac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}=\frac{9x^2+12x+4-x^2-4x-4}{x^3-x^2}=\frac{8x^2+8x}{x^3-x^2}=\frac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\frac{8\left(x+1\right)}{x-1}\)
b) \(\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^3-x\right)+\left(2x^2-2\right)}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)
c) \(\frac{x^2+7x+12}{x^2+5x+6}=\frac{\left(x^2+3x\right)+\left(4x+12\right)}{\left(x^2+3x\right)+\left(2x+6\right)}=\frac{\left(x+3\right)\left(x+4\right)}{\left(x++3\right)\left(x+2\right)}=\frac{x+4}{x+2}\)
d) \(\frac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}=\frac{\left(x^{10}-x^8\right)+\left(x^6-x^4\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{x^8+x^4+1}{x^2+1}\)