Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x-15\)
\(\Leftrightarrow\)\(x^2-5x+3x-15\)
\(\Leftrightarrow\)\(\left(x^2-5x\right)+\left(3x-15\right)\)
\(\Leftrightarrow\)\(x\left(x-5\right)+3\left(x-5\right)\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x+3\right)\)
P/s:#Học Tốt#
a, x^2 - y^2 - 2x - 2y
= (x^2 - y^2) + (2x - 2y)
= (x-y)(x+y) + 2(x-y)
= (x-y) (x+y+2)
c, x^2 - 2x - 4y^2 - 4y
= (x^2 - 4y^2) + (-2x - 4y)
= (x-2y)(x+2y) - 2(x+2y)
= (x-2y-2)(x+2y)
\(x^4+2x^3-16x^2-2x+15\)
\(=x^4+5x^3-3x^3-15x^2-x^2-5x+3x+15\)
\(=x^3\left(x+5\right)-3x^2\left(x+5\right)-x\left(x+5\right)+3\left(x+5\right)\)
\(=\left(x+5\right)\left(x^3-3x^2-x+3\right)\)
\(=\left(x+5\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]\)
\(=\left(x+5\right)\left(x-3\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+5\right)\)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
\(x^2+2x-15\)
\(=x^2+5x-3x-15\)
\(=x\left(x+5\right)-3\left(x+5\right)\)
\(=\left(x+5\right)\left(x-3\right)\)
x2 + 2x - 15
= x2 + 5x - 3x - 15
= x.(x+5) - 3.(x+5)
= (x+5).(x-3)
\(2x^2-x-15=2x^2-6x+5x-15=2x\left(x-3\right)+5\left(x-3\right)=\left(x-3\right)\left(2x+5\right)\)
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)(1)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)-15=t^2+2t+1-16\)
\(=\left(t+1\right)^2-4^2=\left(t+5\right)\left(t-3\right)\)
\(=\left(x^2+5x+9\right)\left(x^2+5x+1\right)\)
b) \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5+x-9\right)\left(2x+5-x+9\right)\)
\(=\left(3x-4\right)\left(x+14\right)\)
2: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)
Đặt \(x^2+x+1=a\)ta có
\(a\left(a+1\right)-12=a^2+a-12=a^2+4a-3a-12=a\left(a+4\right)-3\left(a+4\right)=\left(a+4\right)\left(a-3\right)\)
Thay \(a=x^2+x+1\)ta được
\(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)Kl...
3. \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+7+8\right)+15\)
Đặt \(x^2+8x+7=a\) Ta có
\(a\left(a+8\right)+15=a^2+8a+15=a^2+5a+3a+15=a\left(a+5\right)+3\left(a+5\right)=\left(a+5\right)\left(a+3\right)\)
Thay \(a=x^2+8x+15\)ta được
\(\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x^2+6x+2x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)\)
=(x2 -4x2)-((x2-2x)(x+2))
=(x2-4x2)-(x3+2x2-2x2-4x)
=x2-4x2-x3+4x
=-x3-3x2+4x=-x(x2+3x-4)
\(\left(x-2x\right)\left(x+2x\right)-x\left(x-2\right)\left(x+2\right)\)
\(=x^2-4x^2-x\left(x^2-4\right)\)
\(=x^2-4x^2-x^3+4x\)
\(=x^2-x^3-4x^2+4x\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x\right)\)
\(=x\left(x-1\right)\left(x-4\right)\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)+1-16\\ =\left(x^2+x-1\right)^2-16\\ =\left(x^2+x-1-4\right)\left(x^2+x-1+4\right)\\ =\left(x^2+x-5\right)\left(x^2+x+3\right)\)
bn cho mik hỏi là tại sao lại ra
(x^2+x-1)^2 vậy ạ