K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

hỏi j z pn

30 tháng 10 2016

giải hệ phương trình 

x^2-2*x*y+x+y=0

x^4-4*x^2*y+3*x^2+y^2=0

12 tháng 9 2017

\(x^2\left(y^2+z^2-x^2\right)+y^2\left(z^2+x^2-y^2\right)+z^2\left(x^2+y^{ 2}-z^2\right)\)

\(=x^2\left[\left(y+z\right)^2-x^2-2yz\right]+y^2\left[\left(z+x\right)^2-y^2-2zx\right]+z^2\left[\left(x+y\right)^2-z^2-2xy\right]\)

\(=x^2\left[\left(y+z-x\right)\left(y+z+x\right)-2xy\right]+y^2\left[\left(z+x-y\right)\left(z+x+y\right)-2zx\right]\)

\(+z^2\left[\left(x+y-z\right)\left(x+y+z\right)-2xy\right]\)

\(=x^2\left[\left(y+z-x\right).0-2yz\right]+y^2\left[\left(z+x-y\right).0-2zx\right]+z^2\left[\left(x+y-z\right).0-2xy\right]\)

\(=x^2\left(-2yz\right)+y^2\left(-2zx\right)+z^2\left(-2xy\right)\)\(=-2x^2yz-2xy^2z-2xyz^2\)

\(=-2xyz\left(x+y+z\right)=-2xyz.0=0\)

15 tháng 2 2020

Áp dụng bđt AM-GM ta có:

\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}\ge z\)

Cộng từng vế các bđt trên ta được:

\(P+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)

Vậy Min P=1 \(\Leftrightarrow x=y=z=1\)

15 tháng 2 2020

anh Châu ơi, 1+1+1 đâu có = 2 anh.

13 tháng 2 2018

AM-GM là ra thôi

13 tháng 2 2018

đề bài cho x+y=2

vậy : \(\left(x+y\right)^2=4\)  định lí Mori 

\(P=x^2.y^2.\left\{\left(x+y\right)^2-2xy\right\}\)

mặt khác ta có

\(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow2xy\le\frac{\left(x+y\right)^2}{2}\)

suy ra

\(P\le x^2y^2\left\{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\right\}\)

có x+y=2 

\(\Rightarrow P\le x^2y^2\left(4-2\right)=2x^2y^2\)

ta lại có

\(2x^2y^2\le\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left\{\left(x+y\right)^2-2xy\right\}^2}{2}\)

\(p\le\frac{\left(4-2xy\right)^2}{2}\)

có 2xy=2 ( cmr)

\(P\le\frac{\left(4-2\right)^2}{2}=2\)

vậy giá trị lớn nhất của P là 2 dấu = xảy ra khi x=y=1

26 tháng 7 2017

à thôi mk làm đc r  ,ko cần mn giải nữa