Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b) \(\dfrac{x^2}{6}=\dfrac{24}{25}\)
\(\Leftrightarrow\left(5x\right)^2=144\)
\(\Leftrightarrow\left(5x\right)^2=12^2\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=12\\5x=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{12}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)
c) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x-1\right)\left(x+4\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)
Bài 1:
a; \(\dfrac{7}{8}\) + \(x\) = \(\dfrac{4}{7}\)
\(x\) = \(\dfrac{4}{7}\) - \(\dfrac{7}{8}\)
\(x\) = \(\dfrac{32}{56}\) - \(\dfrac{49}{56}\)
\(x=-\) \(\dfrac{49}{56}\)
Vậy \(x=-\dfrac{49}{56}\)
b; 6 - \(x\) = - \(\dfrac{3}{4}\)
\(x\) = 6 + \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{24}{4}+\dfrac{3}{4}\)
\(x=\dfrac{27}{4}\)
Vậy \(x=\dfrac{27}{4}\)
c; \(\dfrac{1}{-5}\) + \(x\) = \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{3}{4}\) + \(\dfrac{1}{5}\)
\(x=\dfrac{15}{20}\) + \(\dfrac{4}{20}\)
\(x=\dfrac{19}{20}\)
Vậy \(x=\dfrac{19}{20}\)
Bài 1:
d; - 6 - \(x\) = - \(\dfrac{3}{5}\)
\(x\) = - 6 + \(\dfrac{3}{5}\)
\(x=-\dfrac{30}{5}\) + \(\dfrac{3}{5}\)
\(x=-\dfrac{27}{5}\)
Vậy \(x=-\dfrac{27}{5}\)
e; - \(\dfrac{2}{6}\) + \(x\) = \(\dfrac{5}{7}\)
\(x\) = \(\dfrac{5}{7}\) + \(\dfrac{2}{6}\)
\(x\) = \(\dfrac{15}{21}\) + \(\dfrac{1}{3}\)
\(x=\dfrac{15}{21}\) + \(\dfrac{7}{21}\)
\(x=\dfrac{22}{21}\)
Vậy \(x=\dfrac{22}{21}\)
f; - 8 - \(x\) = - \(\dfrac{5}{3}\)
\(x\) = \(-\dfrac{5}{3}\) + 8
\(x\) = \(\dfrac{-5}{3}\) + \(\dfrac{24}{3}\)
\(x\) = \(\dfrac{-19}{3}\)
Vậy \(x=-\dfrac{19}{3}\)
1) \(\frac{17}{6}-\left(x-\frac{7}{6}\right)=\frac{7}{4}\)
\(\Rightarrow x-\frac{7}{6}=\frac{17}{6}-\frac{7}{4}\)
\(\Rightarrow x=\frac{13}{12}+\frac{7}{6}=\frac{9}{4}\)
2) \(\frac{3}{35}-\left(\frac{3}{5}-x\right)=\frac{2}{7}\)
\(\Rightarrow\)\(\frac{3}{5}-x=\frac{3}{35}-\frac{2}{7}=-\frac{1}{5}\)
\(\Rightarrow x=\frac{3}{5}-\left(-\frac{1}{5}\right)=\frac{4}{5}\)
3) 4) Hjhj^_^^_^
1: Trường hợp 1: x<-2
Pt sẽ là -x-2+5-x=7
=>-2x+3=7
=>-2x=4
hay x=-2(loại)
Trường hợp 2: -2<=x<5
Pt sẽlà x+2+5-x=7
=>7=7(luôn đúng)
Trường hợp 3: x>=5
Pt sẽ là x+2+x-5=7
=>2x-3=7
=>x=5(nhận)
4: \(\left|x^2-2x\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(x^2-2x\right)^2=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-2x-x\right)\left(x^2-2x+x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x^2-3x\right)\left(x^2-x\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;1;3\right\}\)
5: Ta có: \(\left|2x+3\right|=x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(2x+3+x+2\right)\left(2x+3-x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\\left(3x+5\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};-1\right\}\)
6: |5x-4|=|x+2|
=>5x-4=x+2 hoặc 5x-4=-x-2
=>4x=6 hoặc 6x=2
=>x=3/2 hoặc x=1/3
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
f(x)=x2+2x3−7x5−9−6x7+x3+x2+x5−4x2+3x7
= -9 - 2x2 + 3x3 - 6x5 - 3x7
g(x)=x5+2x3−5x8−x7+x3+4x2−5x7+x4−4x2−x6−12
= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8
h(x)=x+4x5−5x6−x7+4x3+x2−2x7+x6−4x2−7x7+x
= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7
b) Tính f(x) + g(x) − h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8
ta có h(x)=\(\left(-8x^3+8x^3\right)+\left(3x^7-x^7-2x^7\right)+x^4-36+49\)
(=)h(x)=\(x^4+13\)
=>\(x^4+13=1\left(=\right)x^4=-12\)=> ko tồn tại x thỏa mãn
ta có \(x^4\ge0\)=>\(x^4+13\ge13>0\)
Vậy h(x)luôn nhận giá trị dương
a) |2+x|+|x-7|=3
Ta có: 2+x=0=>x=-2
x-7=0=>x=7
Lập bảng xét dấu:
x -2 7
2+x - 0 + +
x-7 - - 0 +
Nếu x<-2 thì: |2+x|= -(2+x)=-2-x
|x-7|=-(x-7)=-x+7
Khi đó: (-2-x)+(-x+7)=3
=> -2-x-x-7=3
=> -x-x=3+2+7
=> -2x= 12
=> x= -6( thỏa mãn x<-2)
Nếu -2\(\le\)x\(\le\)7 thì: |2+x|=2+x
|x-7|=-(x-7)=-x+7
Khi đó: (2+x)+(-x+7)=3
=> 2+x-x+7=3
=> +x-x=3-2-7
=> 0= -6 (Vô lý)
Nếu x>7 thì: |2+x|=2+x
|x-7|=x-7
Khi đó; (2+x)+(x-7)=3
=> 2+x+x+7=3
=> x+x=3-2-7
=> 2x=-6
=> x= -3( không thỏa mãn x>7)
Vậy x= -6
\(x^2\left(x-7\right)-6\left(7-x\right)\)
\(=x^2\left(-7+x\right)-6\left(7-x\right)\)
\(=-x^2\left(7-x\right)-6\left(7-x\right)\)
\(=\left(-x^2-6\right)\left(7-x\right)\)