K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

x^2(x-5)-4(x-5)=0

=> (x^2 - 4)(x-5) = 0

=> (x-2)(x+2)(x-5) = 0

=> x - 2 = 0 hoặc x + 2 = 0 hoặc x - 5 = 0

=> x = 2 hoặc x = -2 hoặc x = 5

1 tháng 3 2020

\(x^2\left(x-5\right)-4\left(x-5\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)\left(x-5\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\x+2=0\\x-5=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=2\\x=-2\\x=5\end{cases}}\)

24 tháng 7 2018

chẳng có đề bài biết làm ntn

12 tháng 10 2017

Bài 1

1.(x-3)(x+2)-x(x-7)=15

\(\Leftrightarrow x^2+2x-3x-6-x^2+7x=15\)

\(\Leftrightarrow-6+6x=15\)

\(\Leftrightarrow6x=15+6\) =21

\(\Rightarrow x=\dfrac{21}{6}=3,5\)

2.(x-5)(x+5)+x(3-x)=20

\(\Leftrightarrow x^2-25+3x-x^2=20\)

\(\Leftrightarrow-25+3x=20\)

\(\Leftrightarrow3x=20+25=45\)

\(\Rightarrow x=\dfrac{45}{3}=15\)

3.(x-7)2-x(2+x)=-7

\(\Leftrightarrow x^2-14x+49-2x-x^2=-7\)

\(\Leftrightarrow-16x+49=-7\)

\(\Leftrightarrow-16x=-7-49=-56\)

\(\Rightarrow x=\dfrac{-56}{-16}=\dfrac{7}{2}=3,5\)

12 tháng 10 2017

Tiếp bài 1

4.(x-4)2-(x+4)(x-4)=-16

\(\Leftrightarrow x^2-8x+16-x^2-16=-16\)

\(\Leftrightarrow-8x=-16\)

\(\Rightarrow x=\dfrac{-16}{-8}=2\)

5.(x-5)(x+5)-x(2-3x)=4x2-7

\(\Leftrightarrow x^2-25-2x+3x^2=4x^2-7\)

\(\Leftrightarrow4x^2-25-2x+3x^2=4x^2-7\)

\(\Leftrightarrow4x^2-4x^2-2x=-7+25\)

\(\Leftrightarrow-2x=18\)

\(\Rightarrow x=\dfrac{18}{-2}=-9\)

\(x^2-25+2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5\right)+2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5+2\right)=0\)

\(\left(x+5\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}}\)

\(x\left(x-1\right)+x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

P/s tham khảo nha

1 tháng 3 2020

1. \(\Leftrightarrow\left(x-6\right)\left(x+7\right)+5\left(x-6\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left[\left(x+7\right)+5\left(3x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-6\right)\left(16x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\16x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\frac{1}{8}\end{matrix}\right.\)

1 tháng 3 2020

4. \(\Leftrightarrow\left(x+5\right)^2\left(3x+2\right)^2-x^2\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2\left[\left(3x+2\right)^2-x^2\right]=0\)

\(\Leftrightarrow\left(x+5\right)^2\left(2x+2\right)\left(4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\2x+2=0\\4x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x=-2\\4x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
21 tháng 2 2019

1.

\((2x+1)(x^2+2)=0\Rightarrow \left[\begin{matrix} 2x+1=0\\ x^2+2=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{2}\\ x^2=-2< 0(\text{vô lý})\end{matrix}\right.\)

Vậy \(x=-\frac{1}{2}\)

2.\((x^2+4)(7x-3)=0\Rightarrow \left[\begin{matrix} x^2+4=0\\ 7x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-4< 0(\text{vô lý})\\ x=\frac{3}{7}\end{matrix}\right.\)

Vậy \(x=\frac{3}{7}\)

3.

\((x-5)(3-2x)(3x+4)=0\)

\(\Rightarrow \left[\begin{matrix} x-5=0\\ 3-2x=0\\ 3x+4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=\frac{3}{2}\\ x=-\frac{4}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
21 tháng 2 2019

4.

\((x-2)(3x+5)=(2x-4)(x+1)\)

\(\Leftrightarrow (x-2)(3x+5)-(2x-4)(x+1)=0\)

\(\Leftrightarrow (x-2)(3x+5)-2(x-2)(x+1)=0\)

\(\Leftrightarrow (x-2)[(3x+5)-2(x+1)]=0\)

\(\Leftrightarrow (x-2)(x+3)=0\Rightarrow \left[\begin{matrix} x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

5.

\((2x+5)(x-4)=(x-5)(4-x)\)

\(\Leftrightarrow (2x+5)(x-4)-(x-5)(4-x)=0\)

\(\Leftrightarrow (2x+5)(x-4)+(x-5)(x-4)=0\)

\(\Leftrightarrow (x-4)[(2x+5)+(x-5)]=0\)

\(\Leftrightarrow (x-4).3x=0\)

\(\Rightarrow \left[\begin{matrix} x-4=0\\ 3x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=4\\ x=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2020

Lời giải:

a)

PT $\Leftrightarrow (x^2+4x-5)-(x^2-7x+10)=0$

$\Leftrightarrow 11x-15=0$

$\Leftrightarrow x=\frac{15}{11}$

b)

PT $\Leftrightarrow (x^2+4x-21)-(x^2+2x-8)=0$

$\Leftrightarrow 2x-13=0$

$x=\frac{13}{2}$

c)

PT $\Leftrightarrow (x^2-13x+42)-(x^2+4x)-(5x-5)=0$

$\Leftrightarrow -22x+47=0\Rightarrow x=\frac{47}{22}$

6 tháng 8 2016

1, x(x - 5) - 4x + 20 = 0

=> x(x - 5) - 4(x - 5) = 0

=> (x - 4)(x - 5) = 0

=> x - 4 = 0 hoặc x - 5 = 0

=> x = 4 hoặc x = 5

=> x thuộc {4; 5}

2, 3(x + 1) + x(x + 1) 

= (3 + x)(x + 1)

3, 2x3 + x = 0

=> x(2x2 + 1) = 0

=> x = 0 hoặc 2x2 + 1 = 0

=> x = 0 hoặc 2x2 = -1

=> x = 0 hoặc x2 = -1/2 (vô lí vì x2 > hoặc = 0 với mọi x)

=> x = 0

4, x3 - 16x = 0

=> x(x2 - 16) = 0

=> x = 0 hoặc x2 - 16 = 0

=> x = 0 hoặc x2 = 16

=> x = 0 hoặc x = 4 hoặc x = -4

=> x thuộc {-4; 0; 4}

5, x2 + 6x = -9

=> x2 + 6x + 9 = 0

=> x2 + 2.3.x + 32 = 0

=> (x + 3)2 = 0

=> x + 3 = 0

=> x = -3

6, x4 - 2x3 + 10x2 - 20x = 0

=> x2(x2 + 10) - 2x(x2 + 10) = 0

=> (x2 + 2x)(x2 + 10) = 0

=> x(x +2)(x2 + 10) = 0

-TH1: x = 0

-TH2: x + 2 = 0 => x = -2

-TH3: x2 + 10 = 0 => x2 = -10 (vô lí vì x2 > hoặc = 0 với mọi x)

=> x thuộc {0; -2}

7, (2x - 3)2 = (x + 5)2

-TH1: 2x - 3 = x + 5

=> x = 8

- TH2: - 2x + 3 = x + 5

=> -3x = 2

=> x = \(\frac{-2}{3}\)

- TH3: 2x - 3 = - x - 5

=> 3x = -2

=> x = \(\frac{-2}{3}\)

- TH4: - 2x + 3 = - x - 5

=> -x = -8

=> x = 8`

=> x thuộc {\(\frac{-2}{3}\); 8}

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

8 tháng 12 2018

a.(2x - 5)(3x + 4) - x(6x - 5) = 4

⇔ 6x2 +8x -15x-20-6x2+5x=4

⇔-2x=24

⇔ x=-12

vậy x=12

b.(x - 2)2 + x(x - 2) = 0

⇔(x-2)(x-2+x)=0

⇔(x-2) (2x-2)=0

⇔ (x-2)2(x-2)=0

⇔(x-2)2.2=0

⇔(x-2)2=0

⇔x-2=0

⇔x=2

vậy x=2

c.(x3 + 4x2 - x - 4) : (x + 4) = 0

⇔[(x3+4x2)-(x+4)] :(x+4)=0

⇔ [x2(x+4)-(x+4)] :(x+4)=0

⇔ (x+4)(x2-1):(x+4)=0

⇔(x-1)(x+1)=0

\(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)