K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=55\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=55\)

\(\Leftrightarrow x^4-10x^2-4x^2+40=55\)

\(\Leftrightarrow x^4-14x^2-15=0\)

Đặt \(t=x^2\left(t\ge0\right)\), ta có: \(t^2-14t-15=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=15\\t=-1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{15}\\x=-\sqrt{15}\end{matrix}\right.\)

9 tháng 2 2022

<=>\(\left(x^2-4\right)\left(x^2-10\right)=55\)

<=>\(x^4-14x^2+40=55\)

<=>\(x^4-14x^2-15=0\)

<=>\(\left(x^2-15\right)\left(x^2+1\right)=0\)

<=>\(x^2-15=0\)(cái kia lun lớn hơn 0)

<=>\(x^2=15\)

<=>\(x=\pm\sqrt{15}\)

1 tháng 7 2018

Nhanh Nha


 

9 tháng 2 2021

a) \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

\(\Leftrightarrow\left(\frac{x-45}{55}-1\right)+\left(\frac{x-47}{53}-1\right)=\left(\frac{x-55}{45}-1\right)+\left(\frac{x-53}{47}-1\right)\)

\(\Leftrightarrow\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)

\(\Leftrightarrow\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)

Vì \(\hept{\begin{cases}\frac{1}{55}< \frac{1}{45}\\\frac{1}{53}< \frac{1}{47}\end{cases}}\Rightarrow\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}< 0\)

\(\Rightarrow x-100=0\Rightarrow x=100\)

Vậy x = 100

9 tháng 2 2021

Các phần sau tương tự nhé bạn

12 tháng 2 2019

mọi người xem nhanh hộ mình được không ạ, mình đang cần gấp 

15 tháng 4 2020

a

Ta có  \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( đúng )

\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=3\)

Dấu "=" xảy ra tại a=b=c=1

b

\(P=\frac{x}{\left(x+10\right)^2}\)

Đặt \(y=\frac{1}{x+10}\Rightarrow x=\frac{1}{y}-10\)

\(\Rightarrow P=\left(\frac{1}{y}-10\right)\cdot y^2=-10y^2+y\)

\(=-10\left(y^2-2\cdot y\cdot\frac{1}{20}\cdot y+\frac{1}{400}\right)+\frac{1}{40}\)

\(=-10\left(y-\frac{1}{2}\right)^2+\frac{1}{40}\le\frac{1}{40}\)

Dấu "=" xảy ra tại \(y=\frac{1}{2}\Leftrightarrow x=10\)

Vậy...............................

22 tháng 1 2019

tae tae ơi khó quá hổng hiểu j hết trơn

22 tháng 1 2019

mình làm câu cuối thôi nhé , những câu còn lại bạn tự làm đi , dễ mà :)))) chỉ cần quy đồng mẫu lên là được 

\(=\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}\)

\(=\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)

\(=\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)

\(=\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)

Vì \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)\) luôn khác 0 

<=> x + 59 = 0 

<=> x=-59 

1 tháng 4 2018

x^77+x^55+x^33+x^11+9=x^55(x^22+1)+x^11(x^22+)+x+9. phan h thanh hang dang thuc, ta thay hang dang thuc trong ngoac chia het cho x^2+1 nen du la x+9