\(x^2+\sqrt{x+1}\)=1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

giải phương trình

NV
10 tháng 8 2020

6.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)

NV
10 tháng 8 2020

4.

ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)

\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)

\(\Leftrightarrow3t^2-7t+34=0\)

Phương trình vô nghiệm

5.

ĐKXĐ: ...

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:

\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)

\(\Leftrightarrow2x=4\Rightarrow x=2\)

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v

16 tháng 5 2019

1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

=> pt vô no

2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)

\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)

\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)

\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)

NV
16 tháng 5 2019

Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm

Câu 2:

ĐKXĐ: \(x\le3\)

\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))

\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)

\(\Leftrightarrow36x=-36\Rightarrow x=-1\)

Câu 3:

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)

\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)

Phương trình vô nghiệm

21 tháng 7 2019

MN ƠI GIÚP MK NHA MAI MIK ĐI HOK R

21 tháng 7 2019

nhìn mà nhác giải vl :v

a) \(\sqrt{3x^2-2x+1}+4x=\sqrt{3x^2+2x}+1\)

<=> \(\sqrt{3x^2-2x+1}=\sqrt{3x^2+2x}+1-4x\)

<=> \(\left(\sqrt{3x^2-2x+1}\right)^2=\left(\sqrt{3x^2+2x}+1-4x\right)^2\)

<=> \(3x^2-2x+1=19x^2-8\sqrt{3x^2+2x}.x-6x+2\sqrt{3x^2+2x}+1\)

<=> \(-16x^2+8\sqrt{3x^2+2x}.x+4x-2\sqrt{3x^2+2x}=0\)

<=> \(-2\left(4x-1\right)\left(2x-\sqrt{3x^2+2x}\right)=0\)

<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=0\\x=2\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=0\end{cases}}\) (vì k có ngoặc vuông 3 nên mình dùng tạm ngoặc nhọn, thông cảm)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)

b) \(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)

<=> \(\sqrt{x^2+x-2}=\sqrt{2\left(x-1\right)}+1-x^2\)

<=> \(\left(\sqrt{x^2+x-2}\right)^2=\left[\sqrt{2\left(x-1\right)}+1-x^2\right]^2\)

<=> \(x^2+x-2=x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-2}-1\)

<=> \(x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-1}-1=x^2+x-2\)

<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}-1=-x^4+3x^2-x-2\)

<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}=-x^4+3x^2-x-1\)

<=> \(-2\sqrt{2}.\sqrt{x-1}.\left(x^2+1\right)=-x^4+3x^2-x-1\)

<=> \(\left[-2\sqrt{2}.\sqrt{x-1}\left(x^2+1\right)\right]^2=\left(-x^4+3x^2-x-1\right)^2\)

<=> \(8x^5-8x^4-16x^3+16x^2+8x-8=x^8-6x^6+2x^5+11x^4-6x^3-5x^2+2x+1\)

<=> x = 1

d) mình làm tắt cho nhanh 

d) \(\left(\sqrt{4+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)

<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}-\sqrt{x-1}-1=2x\)

<=> \(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}-\sqrt{1-x}=2x+1\)

<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}=2x+1+\sqrt{x-1}\)

<=> \(\left(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}\right)^2=\left(2x+1+\sqrt{1-x}\right)^2\)

<=> \(2\sqrt{-x+1}.\left(x+4\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)

<=> \(\frac{2\sqrt{-x+1}.\left(x+4\right)}{2\left(x+4\right)}=\frac{5x^2}{2\left(x+4\right)}+\frac{4x\sqrt{-x+1}}{2\left(x+4\right)}+\frac{5x}{2\left(x+4\right)}+\frac{2\sqrt{-2x+1}}{2\left(x+4\right)}-\frac{6}{2\left(x+4\right)}\)

<=> \(\sqrt{-x+1}=\frac{5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6}{2\left(4+x\right)}\)

<=> \(2\sqrt{-x+1}.\left(4+x\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)

<=> \(-2x\sqrt{-x+1}+6\sqrt{-x+1}=5x^2+5x-6\)

<=> \(\frac{2\sqrt{-x+1}.\left(-x+3\right)}{2\left(-x+3\right)}=\frac{5x^2}{2\left(-x+3\right)}+\frac{5x}{2\left(-x+3\right)}-\frac{6}{2\left(-x+3\right)}\)

<=> \(\sqrt{-x+1}=\frac{5x^2+5x-6}{2\left(x-3\right)}\)

<=> \(\left(\sqrt{-x+1}\right)^2=\left[\frac{5x^2+5x-6}{2\left(3-x\right)}\right]^2\)

<=> \(-x+1=\frac{25x^4+50x^3-35x^2-60x+36}{36-24+4x}\)

<=> \(\hept{\begin{cases}x=0\\x=\frac{21}{25}\\x=-3\end{cases}}\)=> x = 21/25 (lý do dùng ngoặc nhọn như lý do mình ghi ở trên =))) )

=> x = 21/25

a: \(=\sqrt{5}-1-2\left(\sqrt{2}-1\right)-\left|\sqrt{5}-1-2\left(\sqrt{2}-1\right)\right|\)

\(=\sqrt{5}-1-2\sqrt{2}+2-\left|\sqrt{5}-1-2\sqrt{2}+2\right|\)

\(=-2\sqrt{2}+\sqrt{5}+1-\left(-2\sqrt{2}+\sqrt{5}+1\right)=0\)

b: \(=\left|x-4\right|-\left|x-2\right|\)

\(=\left|3\sqrt{2}-1-4\right|-\left|3\sqrt{2}-1-2\right|\)

\(=\left|3\sqrt{2}-5\right|-\left|3\sqrt{2}-3\right|\)

\(=5-3\sqrt{2}-3\sqrt{2}+3=8-6\sqrt{2}\)

19 tháng 9 2019

cái này có phải bình phương hai vế nên ko nhỉ?

19 tháng 9 2019

Câu 6 có sai ko?

Giải các phương trình sau: 1. a. \(\sqrt{x+3}-\sqrt{x-4}=1\) b. \(\sqrt{10-x}+\sqrt{x+3}=5\) c. \(\sqrt{15-x}+\sqrt{3-x}=6\) d. \(\sqrt{x-1}+\sqrt{x+1}=2\) e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\) f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\) g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\) i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\) k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\) l....
Đọc tiếp

Giải các phương trình sau:

1.

a. \(\sqrt{x+3}-\sqrt{x-4}=1\)

b. \(\sqrt{10-x}+\sqrt{x+3}=5\)

c. \(\sqrt{15-x}+\sqrt{3-x}=6\)

d. \(\sqrt{x-1}+\sqrt{x+1}=2\)

e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\)

f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)

i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

l. \(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)

m. \(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}=1}\)

n. \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)

o. \(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)

p. \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)

q. \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

r. \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

s. \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)

t. \(\sqrt{3x+15}-\sqrt{4x-17}=\sqrt{x+2}\)

u. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)

v. \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)

w. \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)

x. \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)

y. \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\dfrac{x-1}{x-2}}=3\)

z. \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\dfrac{x+2}{x-2}}=-3\)

2.

a. \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)

b. \(\dfrac{x}{2+\dfrac{x}{2+\dfrac{x}{2+\dfrac{...}{2+\dfrac{x}{1+\sqrt{1+x}}}}}}=8\) (vế trái có 100 dấu phân thức)

c. \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)

d. \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)

e. \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)

f. \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

g. \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)

h. \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

i. \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)

k. \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)

l. \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)

m. \(\sqrt[3]{2-x}+\sqrt{x-1}=1\)

n. \(1+\sqrt[3]{x-16}=\sqrt[3]{x+3}\)

o. \(\sqrt[3]{25+x}+\sqrt[3]{3-x}=4\)

p. \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)

Làm nhanh giúp mk nhé mn ơi

5
19 tháng 11 2018

Giải pt :

1

a. ĐKXĐ : \(x\ge4\)

Ta có :

\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)

\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)

\(\Leftrightarrow x=13\) (TM ĐKXĐ)

Vậy \(S=\left\{13\right\}\)

b.ĐKXĐ : \(-3\le x\le10\)

Ta có :

\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy \(S=\left\{1;6\right\}\)

19 tháng 11 2018

Câu c,d làm giống câu b

Câu e làm giống câu a

15 tháng 8 2017

b) \(\sqrt{4x}-\sqrt{9x}+\sqrt{25x}=2\sqrt{x}-3\sqrt{x}+5\sqrt{x}=4\sqrt{x}\)