\(x+2+\sqrt{x-2}=2\sqrt{x+1}\)

Giari phương trình trên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

\(ĐK:x\ge2\)

\(\Leftrightarrow x+2+\sqrt{x-2}-2\sqrt{x+1}=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right)^2+\sqrt{x-2}=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}-1=0\\\sqrt{x-2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\end{cases}\left(voli\right)}\)

Vậy phương trình vô nghiệm

8 tháng 10 2016

Bạn kiểm tra lại đề bài nhé.

1: =>|2x-1|=5

=>2x-1=5 hoặc 2x-1=-5

=>2x=6 hoặc 2x=-4

=>x=3 hoặc x=-2

2: \(\Leftrightarrow2\sqrt{x-3}+\dfrac{1}{3}\cdot3\sqrt{x-3}-\sqrt{x-3}=4\)

\(\Leftrightarrow\sqrt{x-3}=2\)

=>x-3=4

hay x=7

5: \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)

=>x-2=0 hoặc x+2=1

=>x=2 hoặc x=-1

25 tháng 7 2018

đkxđ: x≥-1

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(\Leftrightarrow\left(x+1\right)^2=x+1\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\Leftrightarrow x=-1\end{matrix}\right.\)(t/m)

Vậy pt có 2 nghiệm.......

25 tháng 7 2018

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((

16 tháng 10 2016

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

<=> \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

<=> (\(\sqrt{x-1}-1\))(\(\sqrt{x-2}-\sqrt{x+3}\)) = 0

<=> \(\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{cases}}\)

<=> x = 2