\(x^2+\left(\frac{x-1}{x}\right)^2=8\)

Giải phương trình giùm mik.

Trình bày...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

a) 

\(\frac{x-2}{x+2}\) + \(\frac{3}{x-2}\) =\(\frac{X^2-11}{X^2-4}\)

=> MTC = ( X-2) * (X+2)

<=> \(\frac{\left(x-2\right)\cdot\left(x-2\right)}{\left(x+2\right)\cdot\left(x-2\right)}\) + \(\frac{3\cdot\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

=> ( x - 2 ) ( x - 2 ) + 3 ( x + 2 ) = \(x^2\)-  11

<=>( \(x^2\)- 4x + 4 ) + 3x + 6 = \(x^2\)- 11

=> \(x^2\)- 4x + 4 + 3x + 6 = \(x^2\)- 11

=> \(x^2\)- 4x + 4 + 3x +6 - \(x^2\)- 11 = 0

=>   -x + 10 = 0

=>    -x = -10

=> x = 10

 các câu tiếp tương tự :)

14 tháng 5 2020

Bài làm

@Đặng Đặng: khi chuyển vế (-11 ) bạn không đổi dấu nên dẫn đến bị sai rồi.

a) \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)   ĐKXĐ: \(x\ne\pm2\)

\(\Rightarrow\left(x-2\right)\left(x-2\right)+3\left(x+2\right)=x^2-11\)

\(\Leftrightarrow x^2-4x+4+3x+6=x^2-11\)

\(\Leftrightarrow-x=-21\)

\(\Leftrightarrow x=21\) ( thỏa mãn điều kiện xác định )

Vậy x = 21 là nghiệm phương trình.

b) \(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\)     ĐKXĐ: \(x\ne\pm1\)

\(\Rightarrow\left(x+1\right)+2\left(x-1\right)=x\)

\(\Leftrightarrow x+1+2x-2=x\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\) ( TMĐKXĐ )

Vậy x = 1/2 là nghiệm phương trình.

c) \(\frac{2}{x-1}+\frac{x^2+5}{\left(x+1\right)\left(x-2\right)}=\frac{1}{\left(x-2\right)}\)

\(\Leftrightarrow\frac{2\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}+\frac{\left(x^2+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}=\frac{1\left(x+1\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow\left(2x+1\right)\left(x-2\right)+\left(x^2+5\right)\left(x-1\right)=1\left(x^2-1\right)\)

\(\Leftrightarrow2x^2-4x+x-2+x^3-x^2+5x-5=x^2-1\)

\(\Leftrightarrow x^3+2x-6=0\)

~ Đến đây tự lm tiếp ~

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

28 tháng 1 2020

\(ĐKXĐ:x\ne\pm5\)

 \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)

\(\Rightarrow\frac{3\left(x+5\right)}{4\left(x-5\right)\left(x+5\right)}+\frac{30}{4\left(25-x^2\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\frac{3x+15}{4\left(x-5\right)\left(x+5\right)}+\frac{-30}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\frac{3x+15-30}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\frac{3x-15}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\frac{3\left(x-5\right)}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\frac{3}{4\left(x+5\right)}=\frac{-7}{6\left(x+5\right)}\)

\(\Rightarrow18\left(x+5\right)=-28\left(x+5\right)\)

\(\Rightarrow18\left(x+5\right)+28\left(x+5\right)=0\)

\(\Rightarrow46\left(x+5\right)=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\)(ktm)

Vậy pt vô nghiệm

Các bạn ơi ! Giúp mik với.....B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1<...
Đọc tiếp

Các bạn ơi ! Giúp mik với.....

B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)

B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)

B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)

B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
B5: Cho phương trình : \(\left(m^2-4\right)x+2=m\left(1\right)\)

       Với điều kiện nào của m thì phương trình (1) là một phương trình bậc nhất . Tìm nghiệm của phương trình trên với tham số là m.

 

Ai làm đúng thì mình tích cho nhé !!! Mik cân gấp các bạn nào có cách giải nào thì trả lời nhé !!!! Nghỉ Tết mà nhiều bài quá :)) :v 

0
24 tháng 1 2018

Bài 1: 

\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Leftrightarrow x+66=0\)

\(\Leftrightarrow x=-66\)

b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)

Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)