Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
ĐKXĐ: \(x\ge-5\)
\(\Leftrightarrow x^2-8x+16+x+5-6\sqrt{x+5}+9=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\\sqrt{x+5}-3=0\end{matrix}\right.\)
\(\Leftrightarrow x=4\)
ĐK:x\(\ge-5\)
Ta đặt \(\sqrt{x+5}=a\)(a\(\ge0\))\(\Rightarrow x+5=a^2\Leftrightarrow x=a^2-5\)
Vậy \(x^2-7x=6\sqrt{x+5}-30\Leftrightarrow\left(a^2-5\right)^2-7\left(a^2-5\right)=6a-30\Leftrightarrow a^4-10a^2+25-7a^2+35-6a+30=0\Leftrightarrow a^4-17a^2-6a+90=0\Leftrightarrow\left(a-3\right)^2\left(a^2+6a+10\right)=0\)(1)
Ta có a2+6a+10=a2+2a.3+9+1=(a+3)2+1\(\ge1\)
Vậy (1)\(\Leftrightarrow\left(a-3\right)^2=0\Leftrightarrow a-3=0\Leftrightarrow a=3\Rightarrow x=a^2-5=3^2-5=9-5=4\left(tm\right)\)Vậy x=4 là nghiệm của phương trình
b) ĐKXĐ: \(x\ge-5\) PT \(\Leftrightarrow x^2-7x+30=6\sqrt{x+5}\). Vì vế trái lớn hơn 0 (bạn tự chứng minh) nên bình phương 2 vế ta có;
\(x^4+49x^2+900-14x^3+60x^2-420x=36x+180\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)
Vì x2-6x+45 = (x-3)2+36 >0 nên (x-4)2=0 <=> x=4 (T/m). Vậy phương trình có nghiệm duy nhất x=4
\(Đk:x\ge-5\)
\(PT\Leftrightarrow x^2-7x-6\sqrt{x+5}+30=0\)
\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x+5-6\sqrt{x+5}+9\right)=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+5=9\end{cases}\Rightarrow x=4\left(TMĐKXĐ\right)}\)