![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
\(=a^3b^2-a^2b^3+b^2c^2\left(b-c\right)+c^3a^2-c^2a^3\)
\(=\left(a^3b^2-c^2a^3\right)-\left(a^2b^3-c^3a^2\right)+b^2c^2\left(b-c\right)\)
\(=a^3\left(b^2-c^2\right)-a^2\left(b^3-c^3\right)+b^2c^2\left(b-c\right)\)
\(=a^3\left(b-c\right)\left(b+c\right)-a^2\left(b-c\right)\left(b^2+bc+c^2\right)+b^2c^2\left(b-c\right)\)
\(=\left(b-c\right)\left[a^3\left(b+c\right)-a^2\left(b^2+bc+c^2\right)+b^2c^2\right]\)
\(=\left(b-c\right)\left[a^3\left(b+c\right)-a^2b^2-a^2bc-a^2c^2+b^2c^2\right]\)
\(=\left(b-c\right)\left[a^3\left(b+c\right)-a^2b\left(b+c\right)-c^2\left(a^2-b^2\right)\right]\)
\(=\left(b-c\right)\left[\left(b+c\right)\left(a^3-a^2b\right)-c^2\left(a-b\right)\left(a+b\right)\right]\)
\(=\left(b-c\right)\left[\left(b+c\right)a^2\left(a-b\right)-c^2\left(a-b\right)\left(a+b\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left[\left(b+c\right)a^2-c^2\left(a+b\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a^2b+a^2c-c^2a-c^2b\right)\)
\(=\left(b-c\right)\left(a-b\right)\left[\left(a^2b-c^2b\right)+\left(a^2c-c^2a\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left[b\left(a^2-c^2\right)+ac\left(a-c\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left[b\left(a-c\right)\left(a+c\right)+ac\left(a-c\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\left[b\left(a+c\right)+ac\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\left(ab+bc+ac\right)\)
b) \(x^2-4xy+4y^2-7x+14y+6\)
\(=x^2-2.x.2y+\left(2y\right)^2-7\left(x-2y\right)+6\)
\(=\left(x-2y\right)^2-7\left(x-2y\right)+6\)
\(=\left(x-2y\right)^2-\left(x-2y\right)-6\left(x-2y\right)+6\)
\(=\left(x-2y\right)\left(x-2y-1\right)-6\left(x-2y-1\right)\)
\(=\left(x-2y-1\right)\left(x-2y-6\right)\)
c) \(\left(x^2+6x+8\right)\left(x^2+8x+15\right)-24\)
\(=\left(x+2\right)\left(x+4\right)\left(x+3\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+4\right)\left(x+3\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt x2 + 7x + 11 = a, ta được:
\(=\left(a-1\right)\left(a+1\right)-24\)
\(=a^2-1-24\)
\(=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Đặt \(x^2+4x+8=a,x=b\)
\(\left(a\right)\)\(\Leftrightarrow a^2+3ab+2b^2\)\(=\)\(\left(a+b\right)\left(a+2b\right)\)\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
b, Đặt \(x^2+x+1=t\)
\(\left(b\right)=t.\left(t+1\right)-12=t^2+t-12\)\(=\left(t-3\right)\left(t+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
c, Tương tự câu b
d,
\(\left(d\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+10=t\)
\(\left(d\right)=t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x( x + 3 ) + 4( x + 3 ) = ( x + 3 )( x + 4 )
b) x2 - 10x + 16 = x2 - 2x - 8x + 16 = x( x - 2 ) - 8( x - 2 ) = ( x - 2 )( x - 8 )
c) x2 + 6x + 8 = x2 + 2x + 4x + 8 = x( x + 2 ) + 4( x + 2 ) = ( x + 2 )( x + 4 )
d) x2 - 8x + 15 = x2 - 3x - 5x + 15 = x( x - 3 ) - 5( x - 3 ) = ( x - 3 )( x - 5 )
e) x2 - 8x - 9 = x2 + x - 9x - 9 = x( x + 1 ) - 9( x + 1 ) = ( x + 1 )( x - 9 )
f) x2 + 14x + 48 = x2 + 6x + 8x + 48 = x( x + 6 ) + 8( x + 6 ) = ( x + 6 )( x + 8 )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x\(^2\)+8x +15
=( x\(^2\)+3x) + ( 5x +15)
= x(x+3)+ 5 (x+3)
=(x+3) (x+5)
b)x\(^2\)-4x-12
=( x\(^2\)- 6x) +( 2x -12)
=x(x-6) + 2 (x-6)
=(x - 6) (x+2)
c)9x\(^2\)-6x-24
=(9x\(^2\)-18x)+ (12x-24)
=9x(x-2) + 12 (x -2 )
=(x-2) (9x+12)
a) \(x^2+8x+15\)
\(=x^2+8x+16-1\)
\(=\left(x^2+8x+16\right)-1\)
\(=\left(x+4\right)^2-1\)
\(=\left(x+4-1\right)\left(x+4+1\right)\)
\(=\left(x+3\right)\left(x+5\right)\)
b) \(x^2-4x-12\)
\(=x^2-4x+4-16\)
\(=\left(x^2-4x+4\right)-4^2\)
\(=\left(x-2\right)^2-4^2\)
\(=\left(x-2-4\right)\left(x-2+4\right)\)
\(=\left(x-6\right)\left(x+2\right)\)
c) \(9x^2-6x-24\)
\(=9x^2-6x+1-25\)
\(=\left(9x^2-6x+1\right)-5^2\)
\(=\left(3x-1\right)^2-5^2\)
\(=\left(3x-1-5\right)\left(3x-1+5\right)\)
\(=\left(3x-6\right)\left(3x+4\right)\)
\(=\left(x+2\right)\left(x+4\right)\left(x+3\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)