Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
\(A=-x^2+2xy-4y^2+x-10y-8\)
=> \(-4A=4x^2-8xy+16y^2-4x+40y+32\)
\(=\left(4x^2-8xy+4y^2\right)-\left(4x-4y\right)+1+12y^2+36y+31\)
\(=\left(2x-2y\right)^2-2\left(2x-2y\right)+1+3\left(4y^2+2.2y.3+9\right)+4\)
\(=\left(2x-2y+1\right)^2+3\left(2y+3\right)^2+4\ge4\)
=> \(A\le4:-4=-1\)
"=" xảy ra <=> \(\hept{\begin{cases}2x-2y+1=0\\2y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-\frac{3}{2}\\x=2\end{cases}}\)
Vậy max A=-1 <=> x=2 y=-3/2
Câu b em làm tương tự nhé!
(x^2-6x+8)(x^2-8x+15)+1
=(x^2-4x-2x+8)(x^2-5x-3x+15)+1
=(x(x-4)-2(x-4))(x(x-5)-3(x-5))+1
=(x-4)(x-2)(x-5)(x-3)+1
=(x-2)(x-5)(x-3)(x-4)+1
=(x^2-7x+10)(x^2-7x+12)+1
Gọi a=x^2-7x+11, ta có
(a-1)(a+1)+1
= a2 - 1 + 1
= a2
= (x2 - 7x + 11)2
a) (2x2 - x) + 4x - 2 = 0
x(2x - 1) + 2(2x - 1) = 0
(2x - 1)(x + 2) = 0
2x - 1 = 0 hoặc x + 2 = 0
* 2x - 1 = 0
2x = 1
x = \(\frac{1}{2}\)
* x + 2 = 0
x = -2
Vậy x = -2; x = \(\frac{1}{2}\)
b) x2 - 6x + 8 = 0
x2 - 2x - 4x + 8 = 0
(x2 - 2x) + (-4x + 8) = 0
x(x - 2) - 4(x - 2) = 0
(x - 2)(x - 4) = 0
x - 2 = 0 hoặc x - 4 = 0
* x - 2 = 0
x = 2
* x - 4 = 0
x = 4
Vậy x = 2; x = 4
c) x4 - 8x2 - 9 = 0
x4 + x2 - 9x2 - 9 = 0
(x4 - 9x2) + (x2 - 9) = 0
x2(x2 - 9) + (x2 - 9) = 0
(x2 - 9)(x2 + 1) = 0
x2 - 9 = 0 (vì x2 + 1 > 0 với mọi x)
x2 = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
ta có :
\(8x\left(3x-8\right)+6x\left(-4x+7\right)=-88\)
\(\Leftrightarrow24x^2-64x-24x^2+42x=-88\Leftrightarrow-22x=-88\Leftrightarrow x=4\)
`8x (3x-8) +6x (-4x+7)=-88`
`-> 24x^2 - 64x - 24x^2 + 42x=-88`
`-> (24x^2 - 24x^2)+(-64x+42x)=-88`
`-> -22x=-88`
`->x=-88 : (-22)`
`->x=4`
Vậy `x=4`
a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)
=>3(3x+2)-4(3x+1)=10
=>9x+6-12x-4=10
=>-3x+2=10
=>-3x=8
=>x=-8/3
b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)
=>(x-1)(x-2)-x(x+2)=-9x+10
=>x^2-3x+2-x^2-2x=-9x+10
=>-5x+2=-9x+10
=>x=2(loại)
(3x-1)2-5(2x+1)2+(6x-3)(2x+1)=(x-1)2
<=> (3x-1)2+2(3x-1)(2x+1)+(2x+1)2-6(2x+1)2=(x-1)2
<=> (5x)2-6(4x2+4x+1)-(x2-2x+1)=0
<=> -22x-7=0
=> x=-7/22
\(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1+\left(2x+1\right)\left[-5\left(2x+1\right)+6x-3\right]=x^2-1\)
\(\Leftrightarrow9x^2-6x+1+\left(2x+1\right)\left[-10x-5+6x-3\right]=x^2-1\)
\(\Leftrightarrow9x^2-6x+1+\left(2x+1\right)\left[-4x-8\right]=x^2-1\)
\(\Leftrightarrow9x^2-6x+1-4x\left(2x+1\right)-8\left(2x+1\right)=x^2-1\)
\(\Leftrightarrow9x^2-6x+1-8x^2-4x-16x-8=x^2-1\)
\(\Leftrightarrow\left(9x^2-8x^2-x^2\right)-\left(4x+6x+16x\right)+\left(1-8\right)=-1\)
\(\Leftrightarrow0-26x-7=-1\)
\(\Leftrightarrow-26x=-1+7\)
\(\Leftrightarrow-26x=6\)
\(\Leftrightarrow x=\frac{-3}{13}\)
\(=x^2+6x+9-17=\left(x+3\right)^2-17=\left(x+3-\sqrt{17}\right)\left(x+3+\sqrt{17}\right)\)