![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x2 - 5x + 6
= x2 - 2x - 3x + 6
= ( x2 - 2x ) - ( 3x - 6 )
= x( x - 2 ) - 3( x - 2 )
= ( x - 3 )( x - 2 )
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách 1:\(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
\(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
---
đa thức sau khi phân tích nhân tử có dạng: \(\left(x+a\right)\left(x+b\right)=x^2+x\left(a+b\right)+ab\)
đồng nhất với đa thức ban đầu ta được: \(\hept{\begin{cases}a+b=5\\ab=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\)
vậy \(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)
---
x2+5x+6=\(x^2+2.\frac{5}{2}.x+\frac{25}{4}-\frac{1}{4}=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}=\left(x+\frac{5}{2}-\frac{1}{2}\right)\left(x+\frac{5}{2}+\frac{1}{2}\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: x2 + 5x - 6
= x2 + 6x - x - 6
= x(x + 6) - (x + 6)
= (x - 1)(x + 6)
\(x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=x.\left(x+6\right)-\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, x^2 - 3x + 2
= x2 - 2x - x + 2
= (x2 - 2x) - (x - 2)
= x(x - 2) - (x - 2)
= (x - 1)(x - 2)
b, x^2 + 5x + 6
= x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2)
= (x + 3)(x + 2)
c, x^2 + x - 6
= x2 - 2x + 3x - 6
= x(x - 2) + 3(x - 2)
= (x + 3)(x - 2)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
b)\(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
c)\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
a) \(x^2-3x+2\)
= \(x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
b) \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
c) \(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
\(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=\left(x^2+2x\right)+\left(3x+6\right)\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
\(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=\left(x+2\right)\left(x+3\right)\)