K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2023

\(\left(x+2\right)^5-\left(x-2\right)^5=64\)

\(\Rightarrow x^5+10x^4+40x^3+80x^2+80x+32-\left(x^5-10x^4+40x^3-80x^2+80x-32\right)=64\)

\(\Rightarrow20x^4+160x^2+64=64\)

\(\Rightarrow20x^4+160x^2=0\)

\(\Rightarrow20x^2\left(x^2+8\right)=0\)

mà \(x^2+8>0\)

\(\Rightarrow x^2=0\Rightarrow x=0\)

\(\Leftrightarrow x^5+10x^4+40x^3+80x^2+80x+32-x^5+10x^4-40x^3+80x^2-80x+32=64\)

\(\Rightarrow20x^4+160x^2+54-64=0\)

\(\Rightarrow20x^4+160x^2=0\)

\(\Leftrightarrow20x^2\left(x^2+8\right)=0\)

\(\Leftrightarrow x=0\)

Do \(x^2+8=\ge0\)(luôn đúng)

Vây: \(x^2\ge-8\)

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

8 tháng 7 2016

x=3

b,Dat an 2x^2-3x-1=a la dc

8 tháng 7 2016

a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)

Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)

\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)

Thế vào rồi giải tiếp em nhé.

24 tháng 7 2017

A = ( x - 2 )2 + 5

   =  ( x - 2 ) 2 + 5 > hoặc = 5

=> GTNN là 5

B = x2+ 2x + 3

   = x+ 2 .x . 1 + 1 + 2

   = ( x + 1 )2 + 2 >hoặc = 2

=> GTNN là 2

24 tháng 7 2017

\(A=\left(x-2\right)^2+5\)

vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)

vậy min A=5 khi x=2

\(B=x^2+2x+3\)

\(=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

vậy Min B=2 khi x=-1

21 tháng 7 2016

giải mệt cả người mà có ai biết ơn đâu

8 tháng 12 2019

A = 3x ( x- 2x + 3) - x2 ( 3x - 2 ) + 5 ( x- x ) 

A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x

A = ( 3x- 3x) - ( 6x2 - 2x2 - 5x) + ( 9x - 5x )

A = x

8 tháng 12 2019

Làm tiếp nhé lúc nãy bị lỗi

A = x2 - 4x

Thay x = 5 vào A ta được

A = 52 - 4 . 5 = 5

2 tháng 9 2017

Bài : 1 Ta có : (x - 2)3 + 6(x + 1)2 - x3 + 12 = 0 

=> x3 - 6x2 + 12x - 8 + 6(x2 + 2x + 1) - x3 + 12 = 0

=> x3 - 6x2 + 12x - 8 + 6x2 + 12x + 6 - x3 + 12 = 0

=> 24x - 10 = 0

=> 24x = 10

=> x = 5/12

Vạy x = 5/12

2 tháng 9 2017

Bài 4 : Ta có : M = x2 + 6x - 1

=> M = x2 + 6x + 9 - 10

=> M = (x + 3)2 - 10

Vì : \(\left(x+3\right)^2\ge0\forall x\)

Nên : M = (x + 3)2 - 10 \(\ge-10\forall x\)

Vậy Mmin = -10 khi x = -3

2 tháng 6 2016

a,  tu lam

b,binh phung 2 ve len
 

2 tháng 6 2016

a) \(\left|x^2-3x+1\right|=x+1\)

Ta có:
 

TH1: \(x^2-3x+1=x+1\Rightarrow x^2-3x+1-\left(x+1\right)=0\)

\(\Rightarrow x^2-3x+1-x-1=0\Rightarrow x^2-4x=0\)

\(\Rightarrow x\left(x-4\right)=0\Rightarrow\hept{\begin{cases}x=0\\x-4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=4\end{cases}}\)

TH2: \(x^2-3x+1=-\left(x+1\right)=-x-1\left(1\right)\)

\(\Rightarrow x^2-3x+1-\left(-x-1\right)=0\Rightarrow x^2-3x+1+x+1=0\)

\(\Rightarrow x^2-2x+2=0\Rightarrow\left(x^2-2x+1\right)+1=0\Rightarrow\left(x^2-2.x.1+1^2\right)+1=0\)

\(\Rightarrow\left(x-1\right)^2+1=0\)

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+1\ge1>0\)

=>PT (1) vô nghiệm

Vậy \(x=0;x=4\) là nghiệm của PT

27 tháng 8 2020

Sửa: Áp dụng chứng minh \(x^2+y^2>9\)

Ta có: \(x^2+y^2-2xy=\left(x-y\right)^2\ge0\forall x,y\)

\(\Rightarrow x^2+y^2\ge2xy\)( đpcm )

Áp dụng: Với \(xy=5\)ta có: \(x^2+y^2\ge2.5=10\)

\(\Rightarrow x^2+y^2>9\)( đpcm )