Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x^2-2xy-4y^2=2(x^2-xy-2y^2)$
$=2[(x^2-2xy)+(xy-2y^2)]$
$=2[x(x-2y)+y(x-2y)]$
$=2(x+y)(x-2y)$
-----------------
$x^2-2x-4y^2-4y=(x^2-2x+1)-(4y^2+4y+1)$
$=(x-1)^2-(2y+1)^2=(x-1-2y-1)(x-1+2y+1)$
$=(x-2y-2)(x+2y)$
-------------------
$x^2-4y^2-x-2y=(x^2-4y^2)-(x+2y)=(x-2y)(x+2y)-(x+2y)$
$=(x+2y)(x-2y-1)$
M = 5 - x2 + 2x - 4y2 - 4y
= (- x2 + 2x - 1) + (- 4y2 - 4y - 1) + 7
= 7 - (x - 1)2 - (2y + 1)2\(\le7\)
Dấu "=" xảy ra khi x = 1 và y = - 0,5
(^~^)
M = - x2 + 2xy - 4y2 + 2x + 10y - 8
- M = x2 - 2xy + 4y2 - 2x - 10y + 8
= (y2 + 1 + x2 + 2y - 2xy - 2x) + (3y^2 - 12y + 12) - 5
\(=\left(y+1-x\right)^2+3\left(y-2\right)^2-5\ge-5\)
\(\Rightarrow M\le5\)
Dấu "=" xảy ra khi y = 2 và x = 3.
VT= x2+4y2+z2-4x+4y-8z+23
= (x2-4x+4)+(4y2+4y+1)+(z2-8z+16)+2
= (x-2)2+(2y+1)2+(z-4)2+2>0
vây không tồn tại x,y,z để phương trình trên có nghiệm
ta có : \(x^2-2x-4y^2-4y=x^2-\left(2y\right)^2-2x-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x-2y-2\right)\left(x+2y\right)\)
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn
Yêu cầu và điều kiện đề bài là gì vậy bạn?
tìm x,y