Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x+5+y^2-4y=0\)
\(x^2-2\times x\times1+1^2-1^2+y^2-2\times y\times2+2^2-2^2+5=0\)
\(\left(x-1\right)^2+\left(y-2\right)^2=0\)
\(\left(x-1\right)^2\ge0\)
\(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=\left(y-2\right)^2=0\)
\(\Leftrightarrow x-1=y-2=0\)
\(\Leftrightarrow x=1;y=2\)
\(x^2+4y^2+13-6x-8y=0\)
\(\Leftrightarrow x^2-6x+9+4y^2-8y+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-2\right)^2=0\)
Dấu = xảy ra khi
\(\orbr{\begin{cases}x-3=0\\2y-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=1\end{cases}}\)
\(x^2+4y^2+13-6x+8y=0\)
\(=\left(x-3\right)^2+4\left(y-1\right)^2-26\ge-26\)
\(Min\) là \(-26\Leftrightarrow x=3;y=1\)
Vậy................
Phương trình tương đương (3x)2+2.3x+1+(2y)2−2.2x.2+4=0(3x)2+2.3x+1+(2y)2−2.2x.2+4=0 ⇒(3x+1)2+(2y−2)2=0⇒(3x+1)2+(2y−2)2=0 Do (3x+1)2≥0(3x+1)2≥0 và (2y−2)2≥0(2y−2)2≥0 ∀x,y∀x,y ⇒(3x+1)2+(2y−2)2≥0⇒(3x+1)2+(2y−2)2≥0 Dấu "=" xảy ra ⇔⇔ ⇒{(3x+1)2=0(2y−2)2=0⇒{(3x+1)2=0(2y−2)2=0 ⇒{3x+1=02y−2=0⇒{3x+1=02y−2=0 ⇒⎧⎨⎩x=−13y=1
hok tốt
\(9x^2+6x+4y^2-8y+5=0\)
\(\Leftrightarrow9x^2+6x+1+4\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+4\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)
vậy.......
Đưa phương trình trên về dạng (x-2y+3)^2+(y+2)^2\(\le0\)
Giải và tìm được x=-7 ; y=-2
Kết luận nghiệm x=-7 và y=-2
a)\(x^2+4y^2+6x-12y+18=0\)
\(\Leftrightarrow\left(x^2+2\cdot x\cdot3+9\right)+\left[\left(2y\right)^2-2\cdot2y\cdot3+9\right]=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(2y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+3=0\\2y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\dfrac{3}{2}\end{matrix}\right.\)
b)\(2x^2+2y^2+2xy-10x-8y+41=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2\cdot x\cdot5+25\right)+\left(y^2-2.y.4+16\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-5=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=5\\y=4\end{matrix}\right.\)(vô lý)
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
⇔[
x−2012=0 |
2x−1=0 |
⇔[
x=2012 |
2x=1 |
⇔[
x=2012 |
x=12 |
Vậy x = {2012;12 }
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)
Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)
\(x^2+4y^2+13-6x-8y=0\)
\(x^2-2\times x\times3+3^2-3^2+\left(2y\right)^2-2\times2y\times2+2^2-2^2+13=0\)
\(\left(x-3\right)^2+\left(2y+2\right)^2=0\)
\(\left(x-3\right)^2\ge0\)
\(\left(2y-2\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left(2y-2\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=\left(2y-2\right)^2=0\)
\(\Leftrightarrow x-3=2y-2=0\)
\(\Leftrightarrow x=3;y=1\)