Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) đề là gì bn
2x+3)(4x2−6x+9)−2(4x3−1)(2x+3)(4x2−6x+9)−2(4x3−1)
=8x3+27−8x3+2=29\
e)
(4x−1)3−(4x−3)(16x2+3)(4x−1)3−(4x−3)(16x2+3)
=64x3−48x2+12x−1−(64x3+12x−48x2−9)=64x3−48x2+12x−1−(64x3+12x−48x2−9)
=64x3−48x2+12x−1−64x3−12x+48x2+9=64x3−48x2+12x−1−64x3−12x+48x2+9
=8
\(c, C=x(2x+1)-x^2(x+2)+x^3-x+3\)
\(C=2x^2+x-x^3-2x^2+x^3-x+3\)
\(C=3\)
\(d, (2x+3)(4x^2-6x+9)-2(4x^3-1)\)
\(=(8x^3+27)-2(4x^3-1)\)
\(=8x^3+27-8x^3+2\)\(=29\)
\(e, (4x-1)^3-(4x-3)(16x^2+3)\)
\(=(64x^3-48x^2+12x-1)-(64x^3+12x-48x^2-9)\)
\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)
\(=8\)
\(f, (x+1)^3-(x-1)^3-6(x+1)(x-1)\)
\(=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-6(x^2-1)\)
\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)
\(=8\)
\(a/\)
\(4x-4y+x^2-2xy+y^2\)
\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+x-y\right)\)
\(b/\)
\(x^4-4x^3-8x^2+8x\)
\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)
\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)
\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)
\(=x\left(x+2\right)\left(x^2-6x-4\right)\)
\(d/\)
\(x^4-x^2+2x-1\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)
\(e/\)(Xem lại đề)
\(x^4+x^3+x^2+2x+1\)
\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)
\(=x^3\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^3+x+1\right)\)
\(f/\)
\(x^3-4x^2+4x-1\)
\(=x\left(x^2-4x+4\right)-1^2\)
\(=x\left(x-2\right)^2-1\)
\(=[\sqrt{x}\left(x-2\right)]^2-1\)
\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)
\(c/\)
\(x^3+x^2-4x-4\)
\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)
\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+3x+2\right)\)
\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)
\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
a) \(4x-4y+x^2-2xy+y^2\)
\(=4\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+x-y\right)\)
b) \(x^4-4x^3-8x^2+8x\)
\(=x^4+2x^3-6x^3-12x^2+4x^2+8x\)
\(=x^3\left(x+2\right)-6x^2\left(x+2\right)+4x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^3-6x^2+4x\right)\)
\(=x\left(x+2\right)\left(x^2-6x+4\right)\)
c) \(x^3+x^2-4x-4\)
\(=x^3-2x^2+3x^2-6x+2x-4\)
\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+3x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+x+2\right)\)
\(=\left(x-2\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)
d) \(x^4-x^2+2x-1\)
\(=x^4-\left(x^2-2x+1\right)\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2\right)^2-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
e)Sửa đề \(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-1\right)\)
f) \(x^3-4x^2+4x-1\)
\(=x^3-x^2-3x^2+3x+x-1\)
\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-3x+1\right)\)
\(\frac{x^2+4x+3}{x+2}=\left(x+2\right)\left(x+1\right)+\left(x+1\right)\)