K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

𝑥2+4𝑥+3𝑥2+6𝑥+9

1

Kết hợp các số hạng đồng dạng

𝑥2+4𝑥+3𝑥2+6𝑥+9

4𝑥2+4𝑥+6𝑥+9

2

Kết hợp các số hạng đồng dạng

4𝑥2+4𝑥+6𝑥+9

4𝑥2+10𝑥+9

Đáp án:

4𝑥2+10𝑥+9 .

Đây nha!

13 tháng 7 2017

a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)

\(=x^3+14x^2+27x+51\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)

\(=8x^3+18-8x^3+18=36\)

c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)

\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)

\(=64x^5-1\)

d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)

\(=x^3-x^2+14\)

Chúc bạn học tốt!!!

13 tháng 7 2017

Cảm ơn nha !!!

a) \(\frac{4x+3}{6x-4}+\frac{5x-9}{6x-4}\)

\(=\frac{4x+3+5x-9}{2\left(3x-2\right)}=\frac{9x-6}{2\left(3x-2\right)}\)

\(=\frac{3\left(3x-2\right)}{2\left(3x-2\right)}=\frac{3}{2}\)

b) \(\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{x^2-1}\)

\(=\frac{2\left(x+1\right)+3\left(x-1\right)-4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}=\frac{1}{x-1}\)

28 tháng 12 2019

a) \(\frac{4x+3}{6x-4}+\frac{5x-9}{6x-4}\)

\(=\frac{4x+3+5x-9}{6x-4}\)

\(=\frac{9x-6}{6x-4}\)

\(=\frac{3.\left(3x-2\right)}{2.\left(3x-2\right)}\)

\(=\frac{3}{2}.\)

b) \(\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{x^2-1}\)

\(=\frac{2}{x-1}+\frac{3}{x+1}-\frac{4x-2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{3.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{4x-2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2x+2}{\left(x-1\right).\left(x+1\right)}+\frac{3x-3}{\left(x-1\right).\left(x+1\right)}+\frac{-\left(4x-2\right)}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{2x+2+3x-3-4x+2}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{x+1}{\left(x-1\right).\left(x+1\right)}\)

\(=\frac{1}{x-1}.\)

Chúc bạn học tốt!

31 tháng 7 2023

p) \(\left(9-x\right)\left(x^2+2x-3\right)\)

\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)

\(=9x^2+18x-27-x^3-2x^2+3x\)

\(=-x^3+7x^2+21x-27\)

n) \(\left(-x+3\right)\left(x^2+x+1\right)\)

\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=-x^3-x^2-x+3x^2+3x+3\)

\(=-x^2+2x^2+2x+3\)

o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)

\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)

\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)

\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)

q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)

\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=6x^3-12x^2-18x+x^2-2x-3\)

\(=6x^3-11x^2-20x-3\)

r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)

\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)

\(=-2x^3-6x^2+2x-x^2-3x+1\)

\(=-2x^3-7x^2-x+1\)

u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)

\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)

\(=-2x^3+2x^2+12x+3x^2-3x-18\)

\(=-2x^3+5x^2+9x-18\)

s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)

\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)

\(=-4x^3-12x^2+8x+5x^2+15x-10\)

\(=-4x^3-7x^2+23x-10\)

v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)

\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)

\(=-x^2-3+2x^4+6x+18-12x^3\)

\(=2x^4-12x^3-x^2+6x+15\)

p: (-x+9)(x^2+2x-3)

=-x^3-2x^2+3x+9x^2+18x-27

=-x^3+7x^2+21x-27

n: (-x+3)(x^2+x+1)

=-x^3-x^2-x+3x^2+3x+3

=-x^3+2x^2+2x+3

o: (-6x+1/2)(x^2-4x+2)

=-6x^3+24x^2-12x+1/2x^2-2x+1

=-64x^3+49/2x^2-14x+1

q: (6x+1)(x^2-2x-3)

=6x^3-12x^2-18x+x^2-2x-3

=6x^3-11x^2-20x-3

r: (2x+1)(-x^2-3x+1)

=-2x^3-6x^2+2x-x^2-3x+1

=-2x^3-7x^2-x+1

u: =-2x^3+2x^2+12x+3x^2-3x-18

=-2x^3+5x^2+9x-18

s: =-4x^3-12x^2+8x+5x^2+15x-10

=-4x^3-7x^2+23x-10

a: Ta có: \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)

\(=4x^2+12x+9+4x^2-12x+9-8x^2+18\)

\(=36\)

Bài 2: 

a: \(\left(y^2+6x^2\right)\left(y^2-6x^2\right)=y^4-36x^4\)

b: \(\left(4x+5\right)\left(16x^2-20x+25\right)=\left(16x^2-25\right)\left(4x-5\right)\)

\(=64x^3-16x^2-100x+125\)

26 tháng 7 2021

\(A=\left(2x+5\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(8x^3-12x^2+18x+20x^2-30x+45-8x^3+2=8x^2-12x+47\)

Vậy biểu thức phụ thuộc biến x 

\(B=\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)

\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)

Vậy biểu thức ko phụ thuộc biến x 

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
$A=(2x+5)(4x^2-6x+9)-2(4x^3-1)$

$=(2x+3)(4x^2-6x+9)+2(4x^2-6x+9)-(8x^3-2)$

$=(2x)^3+3^3+8x^2-12x+18-8x^3+2=48x^2-12x+47$ vẫn phụ thuộc  vào giá trị của biến. Bạn xem lại.

$B=(x+3)^3-(x+9)(x^2+27)$

$=x^3+9x^2+27x+27-(x^3+27x+9x^2+243)$

$=x^3+9x^2+27x+27-x^3-9x^2-27x-243$

$=-216$ không phụ thuộc vào giá trị của biến (đpcm)

`@` `\text {Ans}`

`\downarrow`

`4x^3 - 4x^2 - 9x + 9`

`= (4x^3 - 4x^2) - (9x - 9)`

`= 4x^2(x - 1) - 9(x - 1)`

`= (4x^2 - 9)(x - 1)`

____

`x^3 + 6x^2 + 11x + 6`

`= x^3 + x^2 + 5x^2 + 5x + 6x + 6`

`= (x^3 + x^2) + (5x^2 + 5x) + (6x + 6)`

`= x^2*(x + 1) + 5x(x + 1) + 6(x + 1)`

`= (x^2 + 5x + 6)(x+1)`

____

`x^2y - x^3 - 9y + 9x`

`= (x^2y - 9y) - (x^3 - 9x)`

`= y(x^2 - 9) - x(x^2 - 9)`

`= (y - x)(x^2 - 9)`

b: =x^3+x^2+5x^2+5x+6x+6

=(x+1)(x^2+5x+6)

=(x+1)(x+2)(x+3)

c: =x^2(y-x)-9(y-x)

=(y-x)(x^2-9)

=(y-x)(x-3)(x+3)

a: =(4x^3-4x^2)-(9x-9)

=4x^2(x-1)-9(x-1)

=(x-1)(4x^2-9)

=(x-1)(2x-3)(2x+3)

a: Ta có: \(x^2-6x+9-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-y-3\right)\left(x+y-3\right)\)

b: Ta có: \(x^3+4x^2+4x\)

\(=x\left(x^2+4x+4\right)\)

\(=x\left(x+2\right)^2\)

c: Ta có: \(4xy-4x^2-y^2+9\)

\(=-\left(4x^2-4xy+y^2-9\right)\)

\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

23 tháng 10 2016

A = x(x + y)2 - x(x - y)

= x[(x + y)2 - (x - y)]

B = (2x - 3)(4x2 + 6x + 9) - (2x + 3)(4x2 - 6x + 9)

= 8x3 - 27 - 8x3 - 27

= - 54

C = (x + 3)3 - (x - 3)3 - 18x2 - 18

= x3 + 9x2 + 27x + 27 - x3 + 9x2 - 27x + 27 - 18x2 - 18

= 36

16 tháng 12 2023

n: ĐKXĐ: x<>0

\(\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)

=>\(\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)-\left(x+\dfrac{1}{x}\right)+2=0\)

=>\(\left(x+\dfrac{1}{x}-2\right)\left(x+\dfrac{1}{x}-1\right)=0\)

=>\(\dfrac{x^2+1-2x}{x}\cdot\dfrac{x^2+1-x}{x}=0\)

=>\(\left(x^2-2x+1\right)\left(x^2-x+1\right)=0\)

=>\(\left(x-1\right)^2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

=>\(\left(x-1\right)^2=0\)

=>x-1=0

=>x=1

p: \(x^4-4x^3+6x^2-4x+1=0\)

=>\(x^4-x^3-3x^3+3x^2+3x^2-3x-x+1=0\)

=>\(x^3\left(x-1\right)-3x^2\left(x-1\right)+3x\left(x-1\right)-\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-3x^2+3x-1\right)=0\)

=>\(\left(x-1\right)^4=0\)

=>x-1=0

=>x=1