K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 8 2019
\(\hept{\begin{cases}x^2+2xy+2y^2=2y+1\\3x^2+2xy-y^2=2x-y+5\end{cases}}\)
\(\Rightarrow4x^2+4xy+y^2=2x+y+6\)
\(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=6\)
\(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=6\)
.........
HT
0
AH
Akai Haruma
Giáo viên
30 tháng 10 2021
Lời giải:
Cộng PT (1) với PT (2) theo vế có:
$4x^2+2xy+y^2=2x+y-2xy+6$
$\Leftrightarrow 4x^2+4xy+y^2-(2x+y)-6=0$
$\Leftrightarrow (2x+y)^2-(2x+y)-6=0$
$\Leftrightarrow (2x+y+2)(2x+y-3)=0$
$\Rightarrow 2x+y=-2$ hoặc $2x+y=3$
TH1: $2x+y=-2$
$\Rightarrow y=-2x-2$. Đến đây bạn thay vô PT $(1)$ ta tính được $x=-1; y=0$
TH2: $2x+y=3$, tương tự TH1 thì $x=-\frac{11}{5}, y=\frac{12}{5}$
T
0
VT
0