Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x⋮9;15< x\le80\)
\(\Rightarrow x\in B\left(9\right)\)
\(B\left(9\right)=\left\{0;9;18;27;...;81;90;...\right\}\)
Mà \(15< x\le80\)
\(\Rightarrow x\in\left\{18;27;36;...;72\right\}\)
b) Mình nghĩ đề bài nên đổi thành: \(17-x⋮x+5\)
17 = 22 - 5
Ta có;
\(\left[22-\left(5+x\right)\right]⋮x+5\)
Mà \(5+x⋮x+5\)
\(\Rightarrow22⋮x+5\)
\(\Rightarrow x+5\inƯ\left(22\right)\)
Th1: x + 5 = 1 => loại ( Nếu đề bài là x thuộc N)
Th2: x + 5 = 2 => loại ( ___________________)
Th3: x + 5 = 11
x = 11 - 5
x = 6
Th4: x + 5 = 22
x = 22 - 5
x = 17
Vậy \(x\in\left\{17;6\right\}\)
c) Hihi mình k bt
d) x2 + 2x = 80
=> x.x + 2.x =80
=> x(x+2) = 80
Phân tích 80 ra thừa số nguyên tố ta được
80 = 2.2.2.2.5
= 8 . 10
x và x + 2 là 2 số cách nhau 2 đơn vị
=> x = 8
Chỗ nào chưa "thông" inbox nha ( Đầu óc k đen tối đâu)
bn ko lm bài 3 ak cái bài mà chứng minh S chia hết cho 50 đó
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
a, \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
Mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2\Rightarrow A< 2\left(đpcm\right)\)
b, B = 2 + 22 + 23 +...+ 230
= (2+22+23+24+25+26)+...+(225+226+227+228+229+230)
= 2(1+2+22+23+24+25)+...+225(1+2+22+23+24+25)
= 2.63+...+225.63
= 63(2+...+225)
Vì 63 chia hết cho 21 nên 63(2+...+225) chia hết cho 21
Vậy B chia hết cho 21
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387
Ta có:\(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}.5=\frac{15}{15}=1\)(1)
Mặt khác:\(\frac{3}{10}=\frac{3}{10};\frac{3}{11}<\frac{3}{10};\frac{3}{12}<\frac{3}{10};\frac{3}{13}<\frac{3}{10};\frac{3}{14}<\frac{3}{10}\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{3}{10}.5=\frac{15}{10}<\frac{20}{10}=2\)(2)
Từ (1) và (2)
=>\(1<\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<2\)(ĐPCM)
3/10+3/11+3/12+3/13+3/14>3/15+3/15+3/15+3/15+3/15=15/15=1
mặt khác: 3/10+3/11+3/12+3/13+3/14<3/10+3/10+3/10+3/10+3/10=15/10<20/10=2
Vậy: 1<S<2
1)Tìm x thuộc N sao cho:
2016+0x=2016 <=> 0x=0 đúng với mọi x thuộc N
Số phần tử của tập A:
A=N
2, \(M=\left(3^1+3^2+3^3\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+..+3^{28}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+..+3^{28}.13=13.\left(3+3^4+...+3^{28}\right)\)chia hết cho 13
1) \(a^2+a=a\left(a+1\right)⋮2\\ \)
2) \(3a^2-3a=3a\left(a-1\right)⋮6\)
3) \(5a^2-5a=5a\left(a-1\right)⋮10\)
X = 2 + 22 + 23 +......+ 22016
= ( 2 + 22 + 23 + 24 ) +.... + ( 22013 + 22014 + 22015 + 22016 )
= 2.( 1 + 2 + 22 + 23 ) + ...... + 22013.( 1 + 2 + 22 + 23 )
= 2.15 +.....+ 22013.15 chia hết cho 15
=> X chia hết cho 15
mk sửa chút nha phải là chia hết cho 15 mới đúng