Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(x−1)2+8≥8Amin=8⇔x=1B=(x+3)2−12≥−12Bmin=−12⇔x=−3C=x2−4x+3+9=(x−2)2+8≥8Cmin=8⇔x=2E=−(x+2)2+11≤11Emax=11⇔x=−2F=9−4x2≤9Fmax=9⇔x=0
HT
A=x2-2x+9
Ta có: A=x^2-2x+9
=> A=(x^2-2x+1)+8
=>A=(x-1)^2+8
vì (x-1)^2 > 0 với mọi x
=> (x-1)^2+8> 8 với mọi x
Dấu "=" xáy ra khi:
(x-1)^2=0=>x-1=0=>x=0+1=>x=1
Vậy Amin = 8 khi x=1
B=x^2+6x-3
=>B=-(x^2-6x+3)
=>B=-(x^2-2.3x+3^2)-3
=>B=-(x-3)^2-3
vì -(x-3)^2 < 0 với mọi x
=>-(x-3)^2-3< -3 với mọi x
Dấu '=' xảy ra khi x-3=0=>x=0+3=>x=3
Vậy B(min)=-3 khi x=3
chỗ này hình như là Bmax xem lại đề nhé
D=-x^2-4x+7
=>D=-x^2-2.2x+4+3
=>D=(-x^2-2.2x+4)+3
=>D=(-x-2)^2+3
Vì (-x-2)^2 <0 với mọi x
=>(-x-2)^2+3<3 với mọi x
Dấu "=" xảy ra khi x-2=0=>x=0+2=>x=2
Vậy Dmax=3 khi x=2
E=5-4x^2+4x
=>E=-4x^2+4x+5
=>E=(-2x)^2+2.2x+4+1
=>E=[(-2x)^2+2.2x+4]
=>E=(-2x+2)^2+1
Vì: (-2x+2)^2 < 0 với mọi x
=>(-2x+2)^2+1 < 1 với mọi x
Dấu "=" xảy ra khi 2x+2=0=>2x=-2=>x=-1
Vậy Emax=1 khi x=-1
Answer:
\(5x^2-10xy+5y^2-20z^2\)
\(=5.\left(x^2-2xy+y^2-4z^2\right)\)
\(=5.[\left(x+y\right)^2-\left(2z\right)^2]\)
\(=5.\left(x+y-2z\right).\left(x+y+2z\right)\)
\(16x-5x^2-3\)
\(=\left(-5x^2+15x\right)+\left(x-3\right)\)
\(=-5x.\left(x-3\right)+\left(x-3\right)\)
\(=\left(1-5x\right).\left(x-3\right)\)
\(x^2-5x+5y-y^2\)
\(=(x-y).(x+y)-5.(x-y)\)
\(=(x-y).(x+y-5)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3.(x^2-2xy+y^2-4z^2)\)
\(=3[\left(x-y\right)^2-\left(2z\right)^2]\)
\(=3.(x-y-2z).(x-y+2z)\)
\(x^2+4x+3\)
\(=(x^2+x)+(3x+3)\)
\(=x.(x+1)+3.(x+1)\)
\(=(x+1).(x+3)\)
\((x^2+1)^2-4x^2\)
\(=(x^2-2x+1).(x^2+2x+1)\)
\(=(x-1)^2.(x+1)^2\)
\(x^2-4x-5\)
\(=(x^2+x)-(5x+5)\)
\(=x.(x+1)-5.(x+1)\)
\(=(x-5).(x+1)\)
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
a) (x^2+x)^2-14(x^2+x)+24
=(x^2+x)^2-2(x^2+x)-12(x^2+x)24
=(x^2+x)(x^2+x-2)-12(x^2+x-2)
=(x^2+x-12)(x^2+x-2)
a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)
\(\Leftrightarrow x=1\)
b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)
d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)
e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)
f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)
a) x( x + 1 ) - x( x - 5 ) = 6
⇔ x2 + x - x2 + 5x = 6
⇔ 6x = 6
⇔ x = 1
b) 4x2 - 4x + 1 = 0
⇔ ( 2x - 1 )2 = 0
⇔ 2x - 1 = 0
⇔ x = 1/2
c) x2 - 1/4 = 0
⇔ ( x - 1/2 )( x + 1/2 ) = 0
⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)
d) 5x2 = 20x
⇔ 5x2 - 20x = 0
⇔ 5x( x - 4 ) = 0
⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
e) 4x2 - 9 - x( 2x - 3 ) = 0
⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0
⇔ ( 2x - 3 )( 2x + 3 - x ) = 0
⇔ ( 2x - 3 )( x + 3 ) = 0
⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)
f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )
⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0
⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0
⇔ ( 2x - 5 )(-2) = 0
⇔ 2x - 5 = 0
⇔ x = 5/2
Trả lời:
a, \(-xy.\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+3xy\)
b, \(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y\)
\(=12x^6y^5:6x^2y^2-3x^3y^4:6x^2y+4x^2y+6x^2y\)
\(=2x^4y^3-\frac{1}{2}xy^3+\frac{2}{3}\)
a.\(\left(-xy\right)\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+6xy\)
b.\(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y=2x^4y^4-\frac{1}{2}xy^3+\frac{2}{3}\)
câu 1: đề mình ghi thiếu nha, (x-5)(x2-5x+25) - x(x+3)(x-3)
giúp mình với
\(\left(x+2\right)^2+4x=\left(x+2\right)\left(4x-3\right)\Leftrightarrow x^2+4x+4+4x=4x^2+8x-3x-6\)
\(\Leftrightarrow3x^2-3x-10=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{129}}{6}\\x=\frac{3-\sqrt{129}}{6}\end{cases}}\)
\(\left(x+2\right)^2+4x=\left(x+2\right)\left(4x-3\right)\)
\(x^2+4x+4+4x=4x^2+8x-3x-6\)
\(3x^2-3x-10=0\)
\(\Delta=\left(-3\right)^2-\left(4.3.-10\right)=129\)
\(\sqrt{\Delta}=\sqrt{129}\)
\(x_1=\frac{3+\sqrt{129}}{6}\)
\(x_2=\frac{3-\sqrt{129}}{6}\)