K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

a)

$(2x+1)^2-(2x+1)(2x-1)=(2x+1)[(2x+1)-(2x-1)]$

$=2(2x+1)$

b)

$(4x+3)(x-1)-2x(2x+1)=4x^2-x-3-4x^2-2x=-3x-3=-3(x+1)$

c)

$(2x+3)^2-(4x+1)(x+5)=(4x^2+12x+9)-(4x^2+21x+5)$

$=-9x+4$

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

d)

$(x+2)^3-(x-1)(x^2+x+1)=(x^3+6x^2+12x+8)-(x^3-1)$

$=6x^2+12x+9$

e)

$(x+2)(x^2-2x+1)-(x+3)(x-3)=(x^3-3x+2)-(x^2-9)$

$=x^3-x^2-3x+11$

f)

$(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)$

$=x^3+3^3-(x^3-2^3)=3^3+2^3=35$

27 tháng 7 2017

a)(3x-1)2+2(3x-1)(2x+1)2(2x+1)=48x^4+56x^3+21x^2-12x-1 cái này tra google

b)(x2+1)(x-3)-(x-3)(x2+3x+9)=(x2+1)(x-3)-(x-3)(x+3)2=(x-3)[(x2+1)-(x+3)]

c)(2x+3)2+(2x+5)2-2(2x+3)(2x+5)=(2x+3)2+(2x+5)2-(2x+3)(2x+5)-(2x+3)(2x+5)=(2x+3)(2x+3-2x+5)+(2x+5)(2x+5-2x+3)

                                                =8(2x+3)+8(2x+5)=8(2x+3+2x+5)

                                                =8(4x+8)

d)(x-3)(x+3)-(x-3)=(x-3)(x+3)-(x-3)(x-3)=(x-3)(x+3-x-3)=0

e)(2x+1)2+2(4x2-1)+(2x-1)=(2x+1)2+2[(2x)-1]+(2x-1)=(2x+1)(2x+1+2x-1)+(2x-1)(2x+1+2x-1)=4x(2x+1)+4x(2x-1)

                                                                                 =4x(2x+1+2x-1)=16x2

f)(x2-1)(x+2)-(x-2)(x2+2x+4)= (x2-1)(x+2)-(x-2)(x+2)=(x2-1)(x+2)-(x2-22)(x+2)=(x+2)(x2-1-x2-22) mình đoán câu f khai triển ra thế này nhưng kq không giống nhau nên chắc bạn phải tự làm rồi

                                                                     

20 tháng 7 2015

bạn ăn hết nỗi kko mà đem lên

20 tháng 7 2015

phn6 tích đa thức thành nhân tử đấy các bn

NV
7 tháng 9 2020

a/

\(\Leftrightarrow x-2x^2+2x^2-3x-4x+6=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Leftrightarrow x=1\)

b/

\(\Leftrightarrow2x^2-4x-2x^2-6x=0\)

\(\Leftrightarrow-10x=0\)

\(\Leftrightarrow x=0\)

c/

\(\Leftrightarrow\left(2x+3\right)\left(2x+3+x-3\right)=0\)

\(\Leftrightarrow3x\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)

NV
7 tháng 9 2020

c/

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(9y^2+30y+25\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(3y+5\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\3x+5=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=-\frac{5}{3}\)

d/

\(\Leftrightarrow4x^2-4x+1+4x^2+4x+1-2\left(4x^2-2x-2\right)+x=12\)

\(\Leftrightarrow8x^2+x+2-8x^2+4x+4=12\)

\(\Leftrightarrow5x=6\)

\(\Leftrightarrow x=\frac{6}{5}\)

27 tháng 11 2021

lên google

1 tháng 9 2020

( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0

<=> 2x2 - x - 3 - 2x2 + 6x = 0

<=> 5x - 3 = 0

<=> 5x = 3

<=> x = 3/5

( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0

<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0

<=> 4x - 3 = 0

<=> 4x = 3

<=> x = 3/4

( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0

<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0

<=> x4 + 1 - x4 - 2x = 0

<=> 1 - 2x = 0

<=> 2x = 1

<=> x = 1/2

( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0

<=> 12x - 20 = 0

<=> 12x = 20

<=> x = 20/12 = 5/3

1 tháng 9 2020

a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)

\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)

b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)

\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)

c ; d tương tự nhé ! 

Bài 2: Tìm x

a) Ta có: (x-2)(x-1)=x(2x+1)+2

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy: S={0;-4}

b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0x=0\)

Vậy: S={x|\(x\in R\)}

c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x+20=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\frac{10}{3}\)

Vậy: \(S=\left\{-\frac{10}{3}\right\}\)

e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)

\(\Leftrightarrow2x=27-10=17\)

hay \(x=\frac{17}{2}\)

Vậy: \(S=\left\{\frac{17}{2}\right\}\)

a, \(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\frac{4+8x-20}{24}=\frac{18-6x}{24}\)

\(-16-8x=18-6x\)

\(-16-8x-18+6x=0\)

\(-34-2x=0\)

\(2x=-34\Leftrightarrow x=-17\)

b, \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)ĐKXĐ : x \(\ne\)-1 ; 0 

\(\frac{x^2+3x}{x^2+x}+\frac{x^2-x-2}{x^2+x}=\frac{2x^2+2x}{x^2+x}\)

\(x^2+3x+x^2-x-2=2x^2+2x\)

\(2x^2+2x-2=2x^2+2x\)

\(2x^2+2x-2x^2-2x-2=0\)

\(-2\ne0\) Nên phuwong trình vô nghiệm. (xem lại hộ)