K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

\(\left(x^2+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1;1\\x=-1;1\end{cases}}\)

\(\Rightarrow S=\left\{-1;1\right\}\)

Ta có :(x2+1)(x-1)=0

x2+1=0 hoặc x-1=0

x2=-1               x=-1

\(\Rightarrow x\in\varnothing\)

Vây x=-1

_HT_

1)x^2-2x-1=0

<=> (x^2-2x+1)-2=0

<=>(x-1)2 =2

=>x-1 = \(\pm\sqrt{2}\)

=> x= \(\pm\sqrt{2}\) +1

2) x^2-x-1=0

<=> (x^2-x+1/4) -5/4=0

<=>(x+1/2)2= 5/4

=> x+1/2 = \(\pm\sqrt{\dfrac{5}{4}}\)

=>x=\(\pm\sqrt{\dfrac{5}{4}}\) - 1/2

3)x^2+x-3=0

<=> (x^2 + x + 1/4) -13/4=0

<=>(x+1/2)2 = 13/4

=> x+1/2 = \(\sqrt{\dfrac{13}{4}}\)

=> x= \(\sqrt{\dfrac{13}{4}}\) -1/2

4) 4x^2-4x-1=0

<=> (4x^2-4x+1)-2=0

<=>(2x-1)2 -2=0

<=> (2x-1)2 - \(\left(\sqrt{2}\right)^2\) =0

<=> (2x-1 - \(\sqrt{2}\) ) . (2x-1 +\(\sqrt{2}\) )=0

=> 2x-1-\(\sqrt{2}\) =0 hoặc 2x-1+\(\sqrt{2}\) =0

=> 2x= 1+\(\sqrt{2}\) hoặc 2x= 1 - \(\sqrt{2}\)

=> x=\(\dfrac{1+\sqrt{2}}{2}\) hoặc x=\(\dfrac{1-\sqrt{2}}{2}\)

19 tháng 4 2020

Giúp luôn Đức Hải Nguyễn câu e:

e, (x - 1)2 + 2(x - 1)(x + 2) + (x + 2)2 = 0

\(\Leftrightarrow\) (x - 1 + x + 2)2 = 0

\(\Leftrightarrow\) (2x + 1)2 = 0

\(\Leftrightarrow\) 2x + 1 = 0

\(\Leftrightarrow\) x = \(\frac{-1}{2}\)

Vậy S = {\(\frac{-1}{2}\)}

Chúc bn học tốt!!

19 tháng 4 2020

a) (x - 3)(5 - 2x) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\5-2x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=\frac{5}{2}\end{matrix}\right.\)

b) (x + 5)(x - 1) - 2x(x - 1) = 0

<=> (x - 1)(x + 5 - 2x) = 0

<=> (x - 1)(5 - x) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

c) 5(x + 3)(x - 2) - 3(x + 5)(x - 2) = 0

<=> (x - 2)[5(x + 3) - 3(x + 5)] = 0

<=> (x - 2)(5x + 3 - 3x - 15) = 0

<=> (x - 2)(2x - 12) = 0

<=> \(\left[{}\begin{matrix}x-2=0\\2x-12=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

d) (x - 6)(x + 1) - 2(x + 1) = 0

<=> (x + 1)(x - 6 - 2) = 0

<=> (x + 1)(x - 8) = 0

<=> \(\left[{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)

Câu e thì để mình nghĩ đã :)

#Học tốt!

25 tháng 6 2016

a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)

\(S=\left\{1;\frac{1}{3}\right\}\)

b)\(2\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)

\(S=\left\{2;-3\right\}\)

29 tháng 1 2018

a) \(\left(4x+2\right)\left(x^2+1\right)=0\)

\(2.\left(2x+1\right)\left(x^2+1\right)=0\)

\(\Rightarrow2x+1=0\) vì \(x^2+1>0\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=\frac{-1}{2}\)

b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\x-5=0\end{cases}}\)hoặc \(5x+1=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-7}{2}\\x=5\end{cases}}\)  hoặc \(x=\frac{-1}{5}\)

vậy...

29 tháng 1 2018

làm tiếp 

c) \(\left(x^2+4\right)\left(x-2\right)\left(3-2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\3-2x=0\end{cases}}\)  vì \(x^2+4>0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)

vậy...

d) \(\left(x-6\right)\left(x+1\right)-2\left(x+1\right)=0\)

\(\left(x-6-2\right)\left(x+1\right)=0\)

\(\left(x-8\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

vậy...

e) \(\left(x-1\right)^2-4=0\)

\(\left(x-1\right)^2-2^2=0\)

\(\left(x-1-2\right)\left(x-1+2\right)=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\) 

vậy...

24 tháng 8 2017

\(A\))\(\left(x-1\right)^2+\left(x-3\right)^2-2x^2+1=0\)

         \(x^2-2x+1+x^2-6x+9-2x^2+1=0\)

        \(11-8x=0\)

        \(\Rightarrow x=\frac{11}{8}\)

\(B\))\(\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)+2x=0\)

         \(x^3-1-x^3-1+2x=0\)

        \(2x-2=0\)

        \(\Rightarrow x=1\)

24 tháng 8 2017

\(A=\left(x-1\right)^2+\left(x-3\right)^2-2x^2+1=0\)

\(\Rightarrow x^2-2x+1+x^2-6x+9-2x^2+1=0\)

\(\Rightarrow\left(x^2+x^2-2x^2\right)+\left(-2x-6x\right)+\left(1+9+1\right)\)

\(\Rightarrow-8x+12=0\Leftrightarrow x=\frac{-11}{-8}=\frac{11}{8}\)

\(B=\left(x-1\right).\left(x^2+x-1\right)-\left(x+1\right).\left(x^2-x+1\right)+2x=0\)

\(\Rightarrow x.\left(x^2+x-1\right)-x^2-x+1-x.\left(x^2-x+1\right)-x^2+x-1+2x=0\)

\(\Rightarrow x^3+x^2-1-x^2-x+1-x^3+x^2-x-x^2+x-1+2x=0\)

\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2+x^2-x^2\right)+\left(-1+1-1\right)+\left(-x-x+x\right)+2x=0\)

\(\Rightarrow-1+x=0\Leftrightarrow x=1\)

\(C=\left(x-5\right).\left(x-5\right)+\left(2x+1\right)^2-3x^2=0\)

\(\Rightarrow x.\left(x-5\right)-5.\left(x-5\right)+\left(2x\right)^2+2.2x.1+1^2-3x^2=0\)

\(\Rightarrow x^2-5x-5x+25+4x^2+4x+1-3x^2=0\)

\(\Rightarrow\left(x^2-3x^2+4x^2\right)+\left(-5x-5x+4x\right)+26=0\)

\(\Rightarrow2x^2-6x+26=0\Leftrightarrow x=\)

\(D=\left(x-1\right)-9=0\Leftrightarrow x-1=9\Leftrightarrow x=10\)

28 tháng 3 2020

a. Thay \(x_0=2\) vào phương trình, ta được:

\(2^2-3.2+7-1-2.2=8\ne0\)

\(\Rightarrow x_0=2\) không phải là nghiệm của pt

b. Thay \(x_0=-2\) vào phương trình, ta được:

\(\left(-2\right)^2-3.\left(-2\right)-10=0\)

\(\Rightarrow x_0=-2\) là nghiệm của pt

c. Thay \(x_0=2\) vào phương trình, ta được:

\(2^2-3.2+4-2.2+2=0\)

\(\Rightarrow x_0=2\) là nghiệm của pt

d. Thay \(x_0=-1\) vào phương trình, ta được:

\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)

\(\Rightarrow x_0=-1\) là nghiệm của pt

e. Thay \(x_0=-1\) vào phương trình, ta được:

\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)

\(\Rightarrow x_0=-1\) là nghiệm của pt

f. Thay \(x_0=5\) vào phương trình, ta được:

\(4.5^2-3.5-2.5+1=76\ne0\)

\(\Rightarrow x_0=5\) không là nghiệm của pt

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

29 tháng 9 2019

a.\(x^3-x=0 \)

\(x(x^2-1)=0\)

x=0 hay x2-1=0

x=0 hay x2=1

x=0 hay x=1

Vậy x=0 hay x=1

b.\(x^3+1=0\)

\(x(x^2+1)=0\)

\(x=0 hay x^2+1=0\)

\(x=0 hay x^2=-1\)(vô lí vì x2≥0)

Vậy x=0

c.\(x^2-4x=0\)

\(x(x-4)=0\)

x=0 hay x-4=0

x=0 hay x=4

Vậy x=0 hay x=4

d.\(x(x-1)-2(1-x)=0\)

\(x(x-1)+2(x-1)=0 \)

\((x-1)(x+2)=0\)

x-1=0 hay x+2=0

x=1 hay x=-2

Vậy x=1 hay x=-2

e.\(2x(x-2)-(2-x)^2=0\)

\(2x(x-2)+(x-2)^2=0\)

\((x-2)(2x+x-2)=0\)

\((x-2)(3x-2)=0\)

x-2=0 hay 3x-2=0

x=2 hay 3x=2

x=2 hay x=2/3

Vậy x=2 hay x=2/3

f.\(4x(x+1)=8(x+1)\)

\(4x(x+1)-8(x+1)=0\)

\(4(x+1)(x-2)=0\)

4(x+1)=0 hay x-2=0

x+1=0 hay x=2

x=-1 hay x=2

Vậy x=-1 hay x=2

g.\(5x(x-2)-x+2=0\)

\(5x(x-2)-(x-2)=0\)

\((x-2)(5x-1)=0\)

x-2=0 hay 5x-1=0

x=2 hay 5x=1

x=2 hay x=1/5

Vậy x=2 hay x=1/5

h.\((x+1)=(x+1)^2\)

\((x+1)-(x+1)^2=0\)

\((x+1)(1-x-1)=0\)

\((x+1)(-x)=0\)

x+1= 0 hay -x=0

x=-1 hay x=0

Vậy x=-1 hay x=0

12 tháng 7 2019

a)\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

b)2x ( x - 2 ) - (x - 2 ) = 0

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)

c)\(x+5x^2=0\)

\(\Leftrightarrow x\left(1+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{1}{5}\end{matrix}\right.\)

12 tháng 7 2019

\(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

\(x^2+1>0\forall x\)

nên x=0