K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

\(\left(x^2+1\right)^2-\left(x^2-1\right)^2=\left(x^2+1+x^2-1\right).\left(x^2+1-x^2+1\right)=2x^2.2=4x^2\\ \)

10 tháng 7 2018

\(\left(x^2+1\right)^2-\left(x^2-1\right)^2\)

\(\Rightarrow x^4+2x^2+1-\left(x^4-2x^2+1\right)\)

\(\Rightarrow x^4+2x^2+1-x^4+2x^2-1\)

\(\Rightarrow4x^2\)

13 tháng 10 2021

Bn gửi từng câu sẽ có nhều ng trl hơn nhé

tý mk giải câu a cho cần ko

a, \(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\frac{4+8x-20}{24}=\frac{18-6x}{24}\)

\(-16-8x=18-6x\)

\(-16-8x-18+6x=0\)

\(-34-2x=0\)

\(2x=-34\Leftrightarrow x=-17\)

b, \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)ĐKXĐ : x \(\ne\)-1 ; 0 

\(\frac{x^2+3x}{x^2+x}+\frac{x^2-x-2}{x^2+x}=\frac{2x^2+2x}{x^2+x}\)

\(x^2+3x+x^2-x-2=2x^2+2x\)

\(2x^2+2x-2=2x^2+2x\)

\(2x^2+2x-2x^2-2x-2=0\)

\(-2\ne0\) Nên phuwong trình vô nghiệm. (xem lại hộ)

8 tháng 7 2017

\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x\left(-x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}

\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)

\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)

\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)

Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian

27 tháng 11 2021

lên google

Bài 1:

a) Ta có: \(\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)

\(=4x^2-4x+1+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)

\(=4x^2-4x+1+4x^2+8x-12-50+60x-18x^2\)

\(=-10x^2+64x-61\)

b) Ta có: \(\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)

\(=\left(2a^2+1\right)^2-\left(2a\right)^2-\left(2a^2+1\right)^2\)

\(=-4a^2\)

c) Ta có: \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)

\(=\left(9x-1+1-5x\right)^2\)

\(=\left(4x\right)^2=16x^2\)

d)

Sửa đề: \(\left(x^2+5x-1\right)^2+2\left(5x-1\right)\left(x^2+5x-1\right)+\left(5x-1\right)^2\)

Ta có: \(\left(x^2+5x-1\right)^2+2\left(5x-1\right)\left(x^2+5x-1\right)+\left(5x-1\right)^2\)

\(=\left(x^2+5x-1+5x-1\right)^2\)

\(=\left(x^2+10x-2\right)^2\)

\(=x^4+100x^2+4+20x^3-40x-4x^2\)

\(=x^4+20x^3+96x^2-40x+4\)

e) Ta có: \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=x\left(x^2-1\right)-\left(x^3+1\right)\)

\(=x^3-x-x^3-1\)

=-x-1

f) Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^3-16x-x^4+1\)

29 tháng 11 2022

1: \(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)

2: \(=8x^2+12x-10x-15-4\left(2x^2-x+4x-2\right)+10x+7\)

\(=8x^2+12x-8-8x^2+4x-16x+8\)

\(=0\)

3: \(=\left(6x+1-6x+1\right)^2=4\)

5: \(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)

\(=3x^3+6x-3x^3+3x=9x\)