Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)
Với mọi x ta có :
\(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-6x+10>0\)
b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)
\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)
c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)
d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)
\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)
2/ Ta có :
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
Mà \(x+y=7;xy=-3\)
\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)
x2 + xy + y2 + 1 = (x2 + 2.x. \(\frac{y}{2}\) + (\(\frac{y}{2}\))2 ) + \(\frac{3y^2}{4}\) + 1 = (x + \(\frac{y}{2}\))2 + \(\frac{3y^2}{4}\) + 1 \(\ge\) 0 + 0 + 1 = 1> 0 với mọi x; y
Ta có:
x2+xy+y2+1=x2+xy+1/4.y2+3/4.y2+1=(x+1/2.y)2+3/4.y2+1
Mà (x+1/2.y)2 \(\ge\)0
3/4.y2>=0
1>0
Suy ra (x+1/2.y)2+3/4.y2+1>0
Hay x2+xy+y2+1>0(đpcm)
Ta chứng minh BĐT tổng quát
\(\frac{a_1^2+a_2^2+..+a_n^2}{b_1+b_2+...+b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)
Đẳng thức xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+...+\frac{a_n^2}{b_n}\right)\left(b_1+b_2+...+b_n\right)\ge\left(a_1+a_2+...+a_n\right)^2\)
\(\Leftrightarrow\frac{a_1^2+a_2^2+..+a_n^2}{b_1+b_2+...+b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\) (ĐPCM)
BĐT này đúng với BĐT đề bài cho 2 số \(x,y\) dương
T/b: sau này BĐT thông dụng thì tên nó sẽ là BĐT C-S dạng Engel hay BĐT Svac :)
2.
Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)
Lại có \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )
3.
Ta có hằng đẳng thức \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=7\)và \(xy=-3\)vào ta được :
\(x^2+y^2=7^2-2\left(-3\right)\)
\(\Leftrightarrow x^2+y^2=49+6=55\)
Vậy ...
1.
a) Đặt \(A=x^2-6x+10\)
\(A=\left(x^2-6x+9\right)+1\)
\(A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1>0\)
Vậy ...
b) Đặt \(B=x^2-4x+7\)
\(B=\left(x^2-4x+4\right)+3\)
\(B=\left(x-2\right)^2+3\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B\ge3\)
Vậy ...
x2 + xy + y2 + 1
= x2 + 2.x.y.\(\frac{1}{2}\)+ \(\frac{1}{4}y^2-\frac{1}{4}y^2\)+ y2 + 1
= \(\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1\)> 0
\(x^2+xy+y^2+1>0\)
\(\Leftrightarrow\left(x^2+2.\frac{1}{2}xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1>0\)
\(\Leftrightarrow\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
Vì \(\left(x+\frac{y}{2}\right)^2;\frac{3y^2}{4}\ge0\forall x;y\)
\(\Rightarrow x^2+xy+y^2+1>0\)(đpcm)
a: \(VT=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\forall x,y\)
c: \(VT=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x,y\)
áp dụng bđt cô-xi ta có x^2+y^2>=xy
=>x^2+y^2-xy>=0
=>x^2+y^2+xy>=0
Dùng Tam giác Pascal để khai triển (x+y)^6.Ta có
\(VT=x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+y^6-6x^3y^3\)
Xét hiệu VT-VP ta có
\(x^6+6x^5y+15x^4y^2+20x^3y^3+15x^2y^4+6xy^5+y^6-6x^3y^3-4x^4y^2-4x^2y^4-x^5y-xy^5=\)
bẠN trừ ik rồi CM biểu thức >=0, ko bk thì hỏi
Nhân 2 vế với 2 ta có:
\(2x^2+2y^2+2\ge2xy+2x+2y\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2x+1+y^2-2y+1\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge\)
dấu \(=\)xảy ra khi \(x=y=1\)
ta có
(x-y)2=x2_2xy+y2 >=0 với mọi x,y
(x-1)2=X2_2x+1 >=0 với mọi x
(y-1)2=y2-2y+1 >=0 với mọi y
do đó cộng 3 bất đẳng thức theo vế ta có:
2x2+2y2+2-2xy-2x-2y>=0 với mọi x,y
=> x2+y2+1-xy-x-y>=0
=>x2+y2+1>=xy+x+y
ta được điều phải chứng minh