Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x^2\ge0\forall x\)
\(y^2\ge0\forall y\)
\(\Rightarrow x^2+y^2\ge0\)
Dấu = xaye ra khi và chỉ khi x=y=0
Ta có:\(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\Rightarrow x=1\\y+2=0\Rightarrow y=-2\end{cases}}\)
Ta có:\(\left(x-11+y\right)^2\ge0\forall x,y\)
\(\left(x-4-y\right)^2\ge0\)
\(\Rightarrow\left(x-11+y\right)^2+\left(x-4-y\right)^2\ge0\)
Dấu = xaye ra khi và chỉ khi \(\hept{\begin{cases}x-11+y=0\Rightarrow x+y=11\\x-4-y=0\Rightarrow x-y=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(11+4\right):2=7,5\\y=11-7,5=3,5\end{cases}}\)
a)vì x^2 và y^2 luôn luôn lớn hớn hoặc bằng 0 (1)
mà x^2+y^2=0
<=>x,y=0
b) cũng từ (1)
mà (x-1)^2+(y+2)^2=0
=>x-1=0=>x=1
y+2=0=>y=-2
c)cũng từ 1
=>x-11+y=0 (2)
và x-4-y=0 (3)
vì x-11=x-4-7
vì (3) là x-4-y
(2) là x-4-7+y => không tồn tại x thõa mãn đề bài
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
xét x=1 có f(x) =-3.14 +5.13 +2.12-7.1+7
=-3.1+5.1+2.1-7+7
=-3+5+2-7+7
=4
xét x=0 có f(x) =-3.04 +5.03 +2.02-7.0+7
=0+0+0-0+7=7
xét x=2 có f(x) =-3.24 +5.23 +2.22-7.2+7
=-3.16+5.8+2.4-14+7
=48+40+8-14+7
=89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
xét x=-1 có: g(x)=(-1)4-5.(-1)3+7.(-1)2+15.(-1)+2
=1-5.(-1)+7.1-15+2
=1-(-5)+7-15+2
=1+5+7-15+2=0
xét x=0 có: g(x)=04-5.03+7.02+15.0+2
=0-0+0+0+2+2=2
xét x=1 có: g(x)=14-5.13+7.12+15.1+2
=1-5.1+7.1-15+2
=1-5+7-15+2
=1-5+7-15+2=-10
xét x=2 có: g(x)=24-5.23+7.22+15.2+2
=32-5.8+7.4-30+2
=32-40+28-30+2
=-8
3. h(x) = -x4 + 3x3 + 2x2 - 5x + 1 tại x = -2; -1; 1; 2
xét x=-2có:h(X)=-(-2)4 + 3(-2)3 + 2.(-2)2 - 5.(-2) + 1
=-(32)+3.(-8)+2.4+10+1
=-32-24+8+10+1
=-37
xét x=2có:h(X)=-(2)4 + 3.23 + 2.22 - 5.2 + 1
=-(32)+3.8+2.4+10+1
=-32+24+8+10+1
=11
xét x=1có:h(X)=14 + 3.13 + 2.12 - 5.1 + 1
=1+3.1+2.1+5+1
=1+3+2+5+1
=13
xét x=-1có:h(X)=-14 + 3.(-1)3 + 2.(-1)2 - 5.(-1) + 1
=1+3.(-1)+2.(-1)+5+1
=1-3-2+5+1
=2
4. r(x) = 3x4 + 7x3 + 4x2 - 2x - 2 tại x = -1; 0; 1
xét x=-1có:r(X)= 3(-1)4 + 7(-1)3 + 4(-1)2 - 2(-1)- 2
= 3.1+7.(-1) +4.1+2-2
=3-7+4+2-2
= 0
xét x=0có:r(X)= 3.04 + 7.03 + 4.02 - 2.0- 2
= 0+0+0-0-2
= -2
xét x=1có:r(X)= 3(1)4 + 7(1)3 + 4(1)2 - 2(1)- 2
= 3.1+7.1 +4.1-2-2
=3+7+4-2-2
= 10
2) x4 -16 =0 => x4 =16 => x4 = 44 hoặc (-4)4 => x = 4 hoặc -4
a) Ta thấy:
\(\left(x-3\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Để \(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+3\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}x-3=0\\y+3=0\end{cases}\)
\(\Rightarrow\begin{cases}x=3\\y=-3\end{cases}\)
Vậy \(\begin{cases}x=3\\y=-3\end{cases}\)
c) Ta thấy:
\(\left(x-12+y\right)^{200}\ge0\)
\(\left(x-4-y\right)^{200}\ge0\)
\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}\ge0\)
Để \(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)
\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)
\(\Rightarrow\begin{cases}x+y=12\\x-y=4\end{cases}\)
\(\Rightarrow\begin{cases}x=\left(12+4\right):2\\y=\left(12-4\right):2\end{cases}\)
\(\Rightarrow\begin{cases}x=8\\y=4\end{cases}\)
Vậy \(\begin{cases}x=8\\y=4\end{cases}\)
a, ta có tổng <0 nên 1 trong 2 số phải có 1 số âm , số còn lại là duong . Mà x-1<x+3 nên x-1 âm và x+3 dưong . Vậy x-1<0 nên x<1;x+3>0nen x>-3.vAY X<1 HOAC X>-3
bạn muốn mình làm cách bth hay lập bảng xét dấu các nhị thức
x 2 ( x + 2 ) + 4 * ( x + 2 ) = 0
=> ( x + 2 ) ( x 2 + 4 ) = 0
=> \(\orbr{\begin{cases}x+2=0\\x^2+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x^2=-4\end{cases}\Leftrightarrow}x=-2}\)
\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\left(x+2\right)\left(x^2+4\right)=0\)
\(x+2=0\left(x^2+4>0\right)\)
\(x=-2\)
Vậy \(x=-2\)