Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a:
\(=x^2+6x-x+6\)
\(=\left(x^2-x\right)-\left(6x-6\right)\)
\(=x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x-6\right)\left(x-1\right)\)
câu b:
\(=x^2+5x-x-5\)
\(=x^2-x+5x-5\)
\(=x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x+5\right)\left(x-1\right)\)
a, x2 + 5x +6
= x2 - 6x-x +6
= x(x-6)-(x-6)
=( x-1)(x-6)
b, x2+4x-5
= x2+ 5x -x -5
= x(x+5)-(x+5)
=(x-1)(x+5)
a) \(x^7+x^5+1\)
\(=x^7-x+x^5-x^2+x^2+x+1\)
\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b) \(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
A/ \(2x^2+7x+5=2\left(x^2+2x+1\right)+3x+3=2\left(x+1\right)^2+3\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+5\right)\)
B/ \(x^2-4x-5=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-3^2=\left(x-5\right)\left(x+1\right)\)
C/ \(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
D/\(x^4+4x^2-5=\left(x^4+4x^2+4\right)-9=\left(x^2+2\right)^2-3^2=\left(x^2-1\right)\left(x^2+5\right)=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) = 2x^2 + 2x +5x + 5 = 2x(x+1) + 5(x+1) = (2x+5)(x+1)
b) = x^2 + x - 5x - 5 = x(x-1) - 5(x-1) = (x-5)(x-1)
c) = x^3 ( x+1) + x+1 = (x^3+1) (x+1) = (x+1)^2 * (x^2 - x +1)
d) = x^4 - x^2 + 5x^2 -5 = x^2 (x^2-1) + 5(x^2-1) = (x^2+5)(x-1)(x+1)
a) \(x^7+x^5+1\)
\(=x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b) \(x^8+x^4+1\)
\(=x^8-x^6+x^4+x^6-x^4+x^2+x^4-x^2+1\)
\(=x^4\left(x^4-x^2+1\right)+x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\right)\left(x^4-x^2+1\right)\)
\(=\left[x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
1/ = x4 + 2x3 + 4x2 + 3x - 10 = (x4 - x3) + (3x3 - 3x2) + (7x2 - 7x) + (10x - 10)
= (x - 1)(x3 + 3x2 + 7x + 10) = (x - 1)[(x3 + 2x2) + (x2 + 2x) + (5x + 10)]
= (x - 1)(x + 2)(x2 + x + 5)
2/ = (x5 - 2x4) + (x4 - 2x3) + (x3 - 2x2) + (x2 - 2x) + (x - 2) = (x - 2)(x4 + x3 + x2 + x + 1)
\(x^2-x-30\)
\(=x^2+5x-6x-30\)
\(=x\left(x+5\right)-6\left(x+5\right)\)
\(=\left(x+5\right)\left(x-6\right)\)
\(x^2+5x-6x-30\)
\(=x\left(x+5\right)-6\left(x+5\right)\)
\(=\left(x-6\right)\left(x+5\right)\)