Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+7x+8}=a\) thì ta có
\(a^2+a-20=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-5\left(l\right)\\a=4\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2+7x+8}=4\)
\(\Leftrightarrow x^2+7x-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}\)
\(x^2+7x+\sqrt{x^2+7x+8}=12\)
ĐK : \(x^2+7x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)
Đặt \(t=x^2+7x\)
pt \(\Leftrightarrow t+\sqrt{t+8}=12\)
\(\Leftrightarrow\sqrt{t+8}=12-t\)( \(-8\le t\le12\))
Bình phương hai vế
\(\Leftrightarrow t+8=144-24t+t^2\)
\(\Leftrightarrow t^2-24t+144-t-8=0\)
\(\Leftrightarrow t^2-25t+136=0\)(*)
\(\Delta=b^2-4ac=\left(-25\right)^2-4\cdot136=625-544=81\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{25+\sqrt{81}}{2}=\frac{34}{2}=17\left(loai\right)\\t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{25-\sqrt{81}}{2}=\frac{16}{2}=8\left(nhan\right)\end{cases}}\)
\(\Rightarrow x^2+7x=8\)
\(\Rightarrow x^2+7x-8=0\)
\(\Rightarrow x^2-x+8x-8=0\)
\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}\left(tm\right)}\)
Vậy phương trình có hai nghiệm \(\hept{\begin{cases}x_1=1\\x_2=-8\end{cases}}\)
a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)
Phương trình đã cho tương đương với hệ
\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)
\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)
Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm
c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)
\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)
Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)
Tiếp tục giải ;v
ĐKXĐ: \(x\ge-8\)
\(\left(2x+1\right)^2-2\left(2x+1\right)\sqrt{x+8}+\left(x+8\right)-x^2+2x-1=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x+2-\sqrt{x+8}\right)\left(3x-\sqrt{x+8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+8}=x+2\\\sqrt{x+8}=3x\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x\ge-2\\x+8=\left(x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x^2+3x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-4\left(l\right)\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x\ge0\\x+8=9x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge0\\9x^2-x-8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8}{9}\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=1\)
<=> (x-4)(x-3) = \(\sqrt{3}\)(y+1)
Nếu y là số nguyên khác -1 thì y+1 là số nguyên; \(\sqrt{3}\)là số vô tỉ nên \(\sqrt{3}\left(y+1\right)\)là số vô tỉ
mà x-4 và x-3 đều là số nguyên nên (x-3)(x-4) là số nguyên => vô lý
vậy y = -1 => (x-4)(x-3)=0 <=> x=4 hoặc x= 3
vậy có 2 nghiêm thỏa mãn (x;y) = (4;-1); (x;y) = (3;-1)
a) -5x2 + 3x + 2 = 0 (a = -5; b = 3; c = 2)
\(\Delta=3^2-4\cdot\left(-5\right)+2=31\)
=> Phương trình có nghiệm
Ta có a + b + c = -5 +3 +2 = 0
Nên phương trình có 2 nghiệm:
x1= 1; x2 = \(\dfrac{c}{a}\) = \(\dfrac{2}{-5}\) = \(\dfrac{-2}{5}\)
b) 7x2 + 6x - 13 = 0 (a = 7; b = 6; c = -13)
\(\Delta=6^2-4\cdot7\cdot\left(-13\right)=400\)
Nên phương trình có nghiệm
Ta có a + b + c = 7 + 6 +(-13) = 0
Nên phương trình có 2 nghiệm:
x1= 1; x2 = \(\dfrac{c}{a}=\dfrac{-13}{7}\)
c) x2 - 7x + 12 = 0 (a = 1; b = -7; c = 12)
\(\Delta\) = (-7)2 - 4 * 1 * 12= 1
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{1}}{2\cdot1}=4\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{1}}{2\cdot1}=3\)
Vậy phương trình có 2 nghiệm x1=4 và x2=3
d)-0,4x2 +0,3x +0,7 =0 (a = -0,4; b= 0,3; c= 0,7)
\(\Delta=\left(0,3\right)^2-4\cdot\left(-0,4\right)\cdot0,3=0,57\)
Nên phương trình có nghiệm
Ta có a - b + c = (-0,4) - 0,3 + 0,7 = 0
Nên phương trình có 2 nghiệm x1 = -1; \(x_2=\dfrac{-c}{a}=\dfrac{-0,7}{-0,4}=\dfrac{7}{4}\)
e)3x2+(3-2m)x-2m =0(a= 3;b=3-2m;c= -2m)
\(\Delta=\left(3-2m\right)^2-4\cdot3\cdot\left(-2m\right)\)
= 9 - 12m + 4m +24m = 9 + 16m
Do \(\left\{{}\begin{matrix}9>0\\16m\ge0\end{matrix}\right.\)nên phương trình có nghiệm
Ta có a - b + c = 3- (3-2m) +( -2m)
= 3 -3 + 2m - 2m = 0
Nên phương trình có 2 nghiệm
x1= - 1; x2=\(\dfrac{-c}{a}=\dfrac{-\left(-2m\right)}{3}=\dfrac{2m}{3}\)
f) 3x2 - \(\sqrt{3}\)x - ( 3+\(\sqrt{3}\))=0
(a= 3; b= \(-\sqrt{3}\); c=\(-\left(3+\sqrt{3}\right)\))
\(\Delta=\left(-\sqrt{3}\right)^2-4\cdot3\cdot\left(-\left(3+\sqrt{3}\right)\right)\)
= 39+12\(\sqrt{3}\)
Nên phương trình có nghiệm
Ta có a - b +c = 3 - (\(-\sqrt{3}\)) + (-(3+\(\sqrt{3}\))) = 0
Phương trình có 2 nghiệm x1= -1;
x2=\(\dfrac{-c}{a}=\dfrac{-\left(-\left(3+\sqrt{3}\right)\right)}{3}=\dfrac{3+\sqrt{3}}{3}\)
ĐKXĐ : \(x\ge-\dfrac{7}{3}\)
\(x^2+7x+12=2\sqrt{3x+7}\)
\(\Leftrightarrow x^2+7x+12-2\sqrt{3x+7}=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)+\left(3x+7-2\sqrt{3x+7}+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(\sqrt{3x+7}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=0\\\left(\sqrt{3x+7}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=-2\left(TMĐK\right)\)
Vậy \(S=\left\{-2\right\}\)
Chúc bạn học tốt
a) \(x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-2x^2+x\right)-\left(6x-6\right)=0\\ \Leftrightarrow x\left(x-1\right)^2-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\\ \left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Vậy ..............................
b) Đặt \(2x^2+7x-3=a\) theo cách đặt ta có :
\(\left(a-5\right)\cdot a=6\)
\(\Leftrightarrow a^2-5a-6=0\)
nhận xét : \(a-b+c=1-\left(-5\right)-6=0\)
\(\Rightarrow a_1=1\)
\(a_2=\dfrac{-6}{1}=-6\)
Với \(a=a_1=1\) \(\Rightarrow2x^2+7x-3=1\)
\(\Leftrightarrow2x^2+7x-4=0\)
\(\Delta=7^2-4\cdot2\cdot\left(-4\right)=49+32=81\) ( \(\sqrt{\Delta}=\sqrt{81}=9\) )
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt :
\(x_1=\dfrac{-7+9}{2\cdot2}=\dfrac{1}{2}\)
\(x_2=\dfrac{-7-9}{2\cdot2}=-4\)
Với \(a=a_2=-6\) \(\Rightarrow2x^2+7x-3=-6\\ \Leftrightarrow2x^2+7x+3=0\)
\(\Delta=7^2-4\cdot2\cdot3=49-24=25\)
\(\sqrt{\Delta}=\sqrt{25}=5\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt :
\(x_3=\dfrac{-7+5}{2\cdot2}=-\dfrac{1}{2}\)
\(x_4=\dfrac{-7-5}{2\cdot2}=-3\)
Vậy \(x_1=\dfrac{1}{2};x_2=-4;x_3=\dfrac{-1}{2};x_4=-3\) là các giá trị cần tìm
\(x^2-7x+\sqrt{x^2-7x+8}=12\)
\(x^2-7x-12+\sqrt{x^2-7x+8}=0\)
\(x^2-7x+8-20+\sqrt{x^2-7x+8}=0\)
Đặt : \(\sqrt{x^2-7x+8}=t\left(đk:t>0\right)\)
\(\Rightarrow x^2-7x+8=t^2\)
\(\Rightarrow\)Phương trình trở thành : \(t^2+t-20=0\)
\(\Rightarrow\orbr{\begin{cases}t=4\left(tm\right)\\t=-5\left(L\right)\end{cases}}\)
Với \(t=4\Rightarrow\sqrt{x^2-7x+8}=4\)
\(\Rightarrow x^2-7x+8=16\)
\(\Rightarrow x^2-7x+8-16=0\)
\(\Rightarrow x^2-7x-8=0\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
\(x^2-7x+\sqrt{x^2-7x+8}=12\)
\(\Leftrightarrow\sqrt{x^2-7x+8}=12-x^2+7x\)
\(\Leftrightarrow\sqrt{x^2-7x+8}-4=8-x^2+7x\)
\(\Leftrightarrow\frac{x^2-7x+8-16}{\sqrt{x^2-7x+8}+4}=-\left(x-8\right)\left(x+1\right)\)
\(\Leftrightarrow\frac{\left(x-8\right)\left(x+1\right)}{\sqrt{x^2-7x+8}+4}+\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+1\right)\left(\frac{1}{\sqrt{x^2-7x+8}+4}+1\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x^2-7x+8}+4}+1>0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)