Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để ý rằng tất cả các biểu thức 2 vế của 4 bài đều không âm, cho nên ta bình phương 2 vế:
a/
\(\left(x^2-x+7\right)^2=\left(-5x+1\right)^2\)
\(\Leftrightarrow\left(x^2-x+7\right)^2-\left(-5x+1\right)^2=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2+4x+6=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
b/
\(\left(x^2+9\right)^2=\left(-6x+1\right)^2\)
\(\Leftrightarrow\left(x^2+9\right)^2-\left(-6x+1\right)^2=0\)
\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+6x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+10=0\left(vn\right)\\x^2+6x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
c/
\(\left(x^2+5x+7\right)^2-\left(3x+5\right)^2=0\)
\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2+8x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+2=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
d/
\(\left(x^2+6x+9\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(x^2+4x+6\right)\left(x^2+8x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+6=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5
=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0
=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0
=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0
=> -2x2 + 3 = 0
=> -2x2 = -3
=> x2 = 3/2
=> x = \(\pm\sqrt{\frac{3}{2}}\)
2. \(\left(x+5\right)^2-6=0\)
=> x2 + 10x + 25 - 6 = 0
=> x2 + 10x + 19 = 0
=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)
3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)
=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0
=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0
=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0
=> -2x + 27 = 0
=> -2x = -27
=> x = 27/2
4. \(\left(x-2\right)^3-x^3+6x^2=7\)
=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7
=> 12x - 8 = 7
=> 12x = 15
=> x = 5/4
5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)
=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12
=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12
=> -6x + 12 = 12
=> -6x = 0
=> x = 0
6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)
=> 48x - 5x - 2 = 0
=> 43x - 2 = 0
=> 43x = 2
=> x = 2/43
Còn bài cuối tự làm :>
Anh Sang làm cầu kì quá ;-;
1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5
<=> x3 + 8 - x3 - 2x2 = 5
<=> 8 - 2x2 = 5
<=> 2x2 = 3
<=> x2 = 3/2
<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)
<=> \(x=\pm\sqrt{\frac{3}{2}}\)
2. ( x + 5 )2 - 6 = 0
<=> ( x + 5 )2 - ( √6 )2 = 0
<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0
<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)
3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x
<=> x3 + 27 - x3 = 2x
<=> 27 = 2x
<=> x = 27/2
4. ( x - 2 )3 - x3 + 6x2 = 7
<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
<=> 12x - 8 = 7
<=> 12x = 15
<=> x = 15/12 = 5/4
5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12
<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12
<=> 3x2 - 12x + 12 + 6x - 3x2 = 12
<=> -6x + 12 = 12
<=> -6x = 0
<=> x = 0
6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0
<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0
<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0
<=> 43x - 2 = 0
<=> 43x = 2
<=> x = 2/43
7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0
<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0
<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0
<=> -39x + 4 = 0
<=> -39x = -4
<=> x = 4/39
a.
\(x\left(x+3\right)-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy......
a) x ( x + 3 ) - 2x - 6 = 0
<=> x2 + 3x - 2 ( x + 3 ) = 0
<=> x ( x + 3 ) - 2 ( x + 3 ) = 0
<=> ( x + 3 ) ( x - 2 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : S = { -3 ; 2 }
b) 7 - ( 2x + 4 ) = - ( x + 4 )
<=> 7 - 2x - 4 = -x - 4
<=> -2x + x = -4 -7+4
<=> -x = -7
<=> x = 7
Vậy phương trình có nghiệm duy nhất là x = 7
c) x2 - 4x + 4 = 9
<=> ( x2 - 4x + 4 ) - 9 = 0
<=> ( x - 2 )2 - 32 = 0
<=> ( x - 2 + 3 ) ( x - 2 - 3 ) = 0
<=> ( x + 1 ) ( x - 5 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S = { -1 ; 5 }
d) ( x2 - 6x + 9 ) - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 + 2 ) ( x - 3 - 2 ) = 0
<=> ( x - 1 ) ( x - 5 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S = { 1 ; 5 }
bài 2 nè
a+b+c = 0
=>(a+b+c)^3 = 0
a^3 + b^3 + c^3 + 3(a+b)(b+c)(a+c) = 0
vì a+b = -c
a+c = -b
b+c = -a
thay vào => a^3 + b^3 + c^3 - 3abc = 0
=> a^3 + b^3 + c^3 = 3abc
( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9
= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9
= x - 3 - x2 - 7x - 9
= -x2 - 6x - 12