
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng tính chất dãy tỉ số bằng nhau có:
x/2=y/3=x.y/2.3=216/6=36
x/2=36
x=72
y/3=36
y=108


a, \(|x-1|+|2x-y+3|=0\)
Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)
b, \(|x-y|+|x+y-2|=0\)
Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)
c, \(|x+y-1|+|2x-3y|=0\)
Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)
Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)
\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)
a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)
b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)

a) \(\left|x+4\right|-2=0\)
\(\Leftrightarrow\left|x+4\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=2\\x+4=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=-6\end{cases}}\)
b) Sai đề.
c) \(\left|x-1\right|=2x\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x\\x-1=-2x\end{cases}\left(x\ge0\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\) \(\Leftrightarrow x=\frac{1}{3}\) thỏa mãn
d) \(3x-\left|x+15\right|=\frac{5}{4}\)
\(\Leftrightarrow\left|x+15\right|=3x-\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+15=3x-\frac{5}{4}\\x+15=\frac{5}{4}-3x\end{cases}\left(x\ge\frac{5}{12}\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{65}{8}\\x=-\frac{55}{16}\end{cases}}\) \(\Leftrightarrow x=\frac{65}{8}\) thỏa mãn
a) \(\left|x+4\right|-2=0\)
\(\left|x+4\right|=2\)
\(\Rightarrow x+4=\pm2\)
\(\cdot x+4=2\) \(\cdot x+4=-2\)
\(x=-2\) \(x=-6\)
b) đề sai
c)\(\left|x-1\right|=2x\)
\(\Rightarrow x-1=\pm2x\)
\(\cdot x-1=2x\) \(\cdot x-1=-2x\)
\(x-2x=1\) \(x+2x=1\)
\(\Rightarrow x=-1\) \(\Rightarrow x=\frac{1}{3}\)
d) \(3x-\left|x+15\right|=\frac{5}{4}\)
\(\left|x+15\right|=3x-\frac{5}{4}\)
\(\Rightarrow x+15=\pm\left(3x-\frac{5}{4}\right)\)
\(\cdot x+15=3x-\frac{5}{4}\) \(\cdot x+15=-3x+\frac{5}{4}\)
\(x-3x=-\frac{5}{4}-15\) \(x+3x=\frac{5}{4}-15\)
\(-2x=-\frac{65}{4}\) \(4x=\frac{55}{4}\)
\(x=\frac{65}{8}\) \(x=\frac{55}{8}\)

\(2,\\ 1,-2+\dfrac{-5}{8}=-\dfrac{21}{8}\\ 2,\dfrac{-2}{5}-\dfrac{-3}{11}=-\dfrac{7}{55}\\ 3,-3\dfrac{1}{2}-2\dfrac{1}{4}=-\dfrac{7}{2}-\dfrac{9}{4}=\dfrac{-23}{4}\\ 4,\dfrac{5}{8}-\left(-\dfrac{2}{5}\right)-\dfrac{3}{10}=\dfrac{29}{40}\\ 5,\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{10}\right)=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{1}{15}\\ 6,\dfrac{1}{12}-\left(-\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{4}=\dfrac{1}{2}\\ 7,\dfrac{1}{3}-\left[-\dfrac{5}{4}-\left(\dfrac{1}{4}+\dfrac{3}{8}\right)\right]=\dfrac{1}{3}+\dfrac{5}{4}+\dfrac{5}{8}=\dfrac{53}{24}\\ 8,\dfrac{3}{4}-\left[-\dfrac{5}{3}-\left(\dfrac{1}{12}+\dfrac{2}{9}\right)\right]=\dfrac{3}{4}+\dfrac{5}{3}+\dfrac{11}{36}=\dfrac{49}{18}\)
Bài 4:
9: Ta có: \(\left|x-\dfrac{13}{10}\right|+\dfrac{1}{5}=\dfrac{3}{2}\)
\(\Leftrightarrow\left|x-\dfrac{13}{10}\right|=\dfrac{13}{10}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{10}=\dfrac{13}{10}\\x-\dfrac{13}{10}=-\dfrac{13}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\\x=0\end{matrix}\right.\)

a) \(\left(-189\right)+135+\left(-111\right)+\left(-135\right)\)
\(=\left(-189-111\right)+\left(135-135\right)\)
\(=-300+0\)
\(=-300\)
b) \(126+345-126+215\)
\(=\left(126-126\right)+\left(345+215\right)\)
\(=0+560\)
\(=560\)
c) \(\left(-213\right)+186+\left|-213\right|-186+100\)
\(=\left(-213\right)+186+213-186+100\)
\(=\left(-213+213\right)+\left(186-186\right)+100\)
\(=0+0+100\)
\(=100\)
d) \(\left(-34\right)+\left|-123\right|+\left|-34\right|-123+200\)
\(=\left(-34\right)+123+34-123+200\)
\(=\left(-34+34\right)+\left(123-123\right)+200\)
\(=0+0+200\)
\(=200\)
e) \(\left(-250\right)+\left(-15\right)-\left(-250\right)+\left|-15\right|+150\)
\(=\left(-250\right)+\left(-15\right)+250+15+150\)
\(=\left(-250+250\right)+\left(-15+15\right)+150\)
\(=0+0+150\)
\(=150\)