Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : -3x2 + 14x - 8 = 0
<=> -3x2 + 12x + 2x - 8 = 0
<=> -3x(x - 4) + 2(x - 4) = 0
<=> (x - 4)(2 + 3x) = 0
<=> \(\orbr{\begin{cases}x-4=0\\2+3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\3x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-\frac{2}{3}\end{cases}}\)
a: \(=\dfrac{3x^3+4x^2+6x^2+8x+6x+8-5}{3x+4}\)
=x^2+2x+2-5/3x+4
b: \(\Leftrightarrow x^3-2x^2-x^2+2x+3x-6+m+4⋮x-2\)
=>m+4=0
=>m=-4
\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)
c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)
d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\)
t i c k cho mình nha
\(\left(x^2-2x+4\right)\left(x^2+3x+4\right)=14x^2\)
\(\Leftrightarrow x^4+3x^3+4x^2-2x^3-6x^2-8x+4x^2+12x+16=14x^2\)
\(\Leftrightarrow x^4+x^3+2x^2-14x^2+4x=0\)
\(\Leftrightarrow x^4+x^3-12x^2+4x=0\)
\(\Leftrightarrow x\left(x^3+x^2-12x+4\right)=0\)
\(\Leftrightarrow x=0\) ( vì \(x^3+x^2-12x+4\ne0\) )
x3 + x2 + 4
= x3 + 2x2 - x2 - 2x + 2x + 4
= x2(x + 2) - x(x + 2) + 2(x + 2)
= (x + 2)(x2 - x + 2)
2x3 - 3x2 + 3x - 1
= 2x3 - x2 - 2x2 + x + 2x - 1
= 2x2(x - 1/2) - 2x(x - 1/2) + 2(x - 1/2)
= (x - 1/2)(2x2 - 2x + 2)
= 2(x - 1/2)(x2 - x + 1)
3x3 - 14x2 + 4x + 3
= 3x3 + x2 - 15x2 - 5x + 9x + 3
= 3x2(x + 1/3) - 15x(x + 1/3) + 9(x + 1/3)
= (x + 1/3)(3x2 - 15x + 9)
= 3(x + 1/3)(x2 - 5x + 3)
* 45x(3 - x) = 15x(x - 3)3
\(\Leftrightarrow\) 45x(3 - x) - 15x(x - 3)3 = 0
\(\Leftrightarrow\) 45x(3 - x) + 15x(3 - x)3 = 0
\(\Leftrightarrow\) 15x(3 - x)[3 + (3 - x)2] = 0
\(\Leftrightarrow\left[{}\begin{matrix}15x=0\\3-x=0\\3+\left(3-x\right)^2=0\end{matrix}\right.\)
Vì 3 + (3 - x)2 > 0 với mọi x
\(\Rightarrow\) 15x = 0 hoặc 3 - x = 0
\(\Leftrightarrow\) x = 0 và x = 3
Vậy S = {0; 3}
* 7x2 + 14x + 7 = 3x2 + 3x
\(\Leftrightarrow\) 7(x2 + 2x + 1) = 3x(x + 1)
\(\Leftrightarrow\) 7(x + 1)2 = 3x(x + 1)
\(\Leftrightarrow\) 7(x + 1)2 - 3x(x + 1) = 0
\(\Leftrightarrow\) (x + 1)[7(x + 1) - 3x] = 0
\(\Leftrightarrow\) (x + 1)(7x + 7 - 3x) = 0
\(\Leftrightarrow\) (x + 1)(4x + 7) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{-7}{4}\end{matrix}\right.\)
Vậy S = {-1; \(\frac{-7}{4}\)}
* 3x2 - 12x + 12 = x4 - 8x
\(\Leftrightarrow\) 3(x2 - 4x + 4) = x(x3 - 8)
\(\Leftrightarrow\) 3(x - 2)2 = x(x - 2)(x2 + 2x + 4)
\(\Leftrightarrow\) 3(x - 2)2 - x(x - 2)(x2 + 2x + 4) = 0
\(\Leftrightarrow\) (x - 2)[3(x - 2) - x(x2 + 2x + 4)] = 0
\(\Leftrightarrow\) (x - 2)(3x - 6 - x3 - 2x2 - 4x) = 0
\(\Leftrightarrow\) (x - 2)(-x3 - 2x2 - x - 6) = 0
\(\Leftrightarrow\) -1(x - 2)(x3 + 2x2 + x + 6) = 0
\(\Leftrightarrow\) (x - 2)[x(x2 + 2x + 1) + 6] = 0
\(\Leftrightarrow\) (x - 2)[x(x + 1)2 + 6] = 0
Ta có: x(x + 1)2 + 6 = 0
\(\Leftrightarrow\) x(x + 1)2 = -6
Nếu x = -2 thì (x + 1)2 = 3 hay (x + 1)2 + 3 = 0
mà (x + 1)2 + 3 > 0 với mọi x nên x không thỏa mãn giá trị trên
Nếu x = 2 thì (x + 1)2 = -3 (loại vì KTM)
Nếu x = 1 thì (x + 1)2 = -6 (loại vì KTM)
Nếu x = -1 thì (x + 1)2 = 6
Thay x = -1 vào pt (x + 1)2 = 6 ta được:
(-1 + 1)2 = 6
\(\Leftrightarrow\) 0 = 6 (KTM)
Từ đó suy ra phương trình x(x + 1)2 + 6 = 0 vô nghiệm
\(\Rightarrow\) x - 2 = 0
\(\Leftrightarrow\) x = 2
Vậy S = {2}
* y2 - x2 = x3 - 3x2y + 3xy2 - y3
\(\Leftrightarrow\) (y - x)(y + x) = (x - y)3
\(\Leftrightarrow\) (y - x)(y + x) - (x - y)3 = 0
\(\Leftrightarrow\) (y - x)(y + x) + (y - x)3 = 0
\(\Leftrightarrow\) (y - x)[y + x + (y - x)2] = 0
Vì y + x + (y - x)2 > 0 với mọi x
\(\Rightarrow\) y - x = 0
\(\Leftrightarrow\) x = y
Vậy S = {y}
Chúc bn học tốt!!
\(\left(x^2-3x\right)^2-14x^2+42x+40=\left[\left(x^2-3x\right)^2-14\left(x^2-3x\right)+49\right]-9=\left(x^2-3x-7\right)-3^3=\left(x^2-3x-7-3\right)\left(x^2-3x-7+3\right)=\left(x^2-3x-10\right)\left(x^2-3x-4\right)=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
\(\left(x^2-3x\right)^2-14x^2+42x+40\\ =x^4-6x^3+9x^2-14x^2+42x+40\\ =x^4-6x^3-5x^2+42x+40\\ =x^4+x^3-7x^3-7x^2+2x^2+2x+40x+40\\ =\left(x+1\right)\left(x^3-7x^2+2x+40\right)\\ =\left(x+1\right)\left(x^3+2x^2-9x^2-18x+20x+40\right)\\ =\left(x+1\right)\left(x+2\right)\left(x^2-9x+20\right)\\ =\left(x-5\right)\left(x-4\right)\left(x+1\right)\left(x+2\right)\)