K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Không có dấu "=" nên đây không được gọi là phương trình bạn nhé. Bạn cần xem lại đề.

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

NV
5 tháng 3 2020

\(\Delta=\left(3m-2\right)^2-4\left(2m^2-5m-3\right)\)

\(=m^2+8m+16=\left(m+4\right)^2\)

Phương trình có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=\frac{3m-2+m+4}{2}=2m+1\\x_2=\frac{3m-2-m-4}{2}=m-3\end{matrix}\right.\)

TH1: \(m=-4\) ktm

TH2: \(\left[{}\begin{matrix}2m+1>0\\m-3>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>-\frac{1}{2}\\m>3\end{matrix}\right.\) \(\Rightarrow m>-\frac{1}{2}\)

30 tháng 7 2021

undefined

undefined

b) Thay x=2 vào pt, ta được:

\(4\left(m^2-1\right)-4m+m^2+m+4=0\)

\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)

\(\Leftrightarrow5m^2-3m=0\)

\(\Leftrightarrow m\left(5m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=\dfrac{2m}{m^2-1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)

14 tháng 6 2017

Pt \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\) (1)

Ta thấy ngay pt (1) có 1 nghiệm x = 2

Vậy nên ta có: \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+\left(1-m\right)x+\left(-2m^2+m\right)\right)=0\)

Để pt (1) có đúng hai nghiệm phân biệt thì pt \(\Leftrightarrow x^2+\left(1-m\right)x+\left(-2m^2+m\right)=0\) có 1 nghiệm duy nhất khác 2

Tức là: \(\hept{\begin{cases}\Delta=0\\4+2\left(1-m\right)+\left(-2m^2+m\right)\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(3m-1\right)^2=0\\-2m^2-m+6\ne0\end{cases}}\Leftrightarrow m=\frac{1}{3}\)

Vậy \(m=\frac{1}{3}.\)

18 tháng 9 2024

Thầy/cô ơi làm sao để tách ra được nhân tử chung (x-2) vậy ạ 

15 tháng 6 2015

a/ theo định lí Vi-ét ta có : x1+x2 = -1-2m hay -3-2 = -1-2m <=>m=2

và x1x2 = c/a = -n+3 hay (-3).(-2) = -n+3 <=> n= -3 

Mình mới làm kịp câu thôi vì mình bận lắm nên bữa khác giải quyết nha

          

19 tháng 3 2016
Câu 3: ( 1.5 điểm). Cho phương trình: x2 +(2m + 1)x – n + 3 = 0 (m, n là tham số) a) Xác định m, n để phương trình có hai nghiệm -3 và -2. b) Trong trường hợp m = 2, tìm số nguyên dương n bé nhất để phương trình đã cho có nghiệm dương.

Bạn giải denta và chú ý điều kiện của a nhá

11 tháng 4 2021

undefined

11 tháng 4 2021

còn câu c nx bạn ơi, câu đó mình khá khó hiểu, bạn giúp mình vs nha!!! cảm ơn bạn nhiều