Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)
Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)
\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy+xy}{xy}\)
\(=\frac{-2xy}{xy}\)
\(=-2.\)
a: \(=\dfrac{2x^2+2xy-xy-y^2}{2x^2-2xy-xy+y^2}=\dfrac{\left(x+y\right)\left(2x-y\right)}{\left(x-y\right)\left(2x-y\right)}=\dfrac{x+ỹ}{x-y}\)
b: Sửa đề:\(\dfrac{\left(x+y\right)^2}{2y^2+xy-x^2}\)
\(=\dfrac{\left(x+y\right)^2}{2y^2+2xy-xy-x^2}\)
\(=\dfrac{\left(x+y\right)^2}{\left(x+y\right)\left(2y-x\right)}=\dfrac{x+y}{2y-x}\)
\(DK\hept{\begin{cases}x^3+2x^2y-xy^2-2y^3\ne0\\x-y\ne0\end{cases}}\)
\(\Leftrightarrow\left(x^2+3xy+2y^2\right)\left(x-y\right)=x^3+2x^2y-xy^2-2y^3\)
\(\Leftrightarrow x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3=x^3+2x^2y-xy^2-2y^3\)
\(\Leftrightarrow x^2y=0\)\(\Rightarrow ko.dung.\)
Ta phân tích mẫu:
\(x^3+2x^2y-xy^2-2y^3\)
\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)
\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)
\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)
Thay vào ta có:
\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)
Vậy ta có điều phải chứng minh