
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
$2x^3y+2xy^3+4x^2y^2-8xy$
$=2xy(x^2+y^2+2xy-4)$
$=2xy[(x^2+2xy+y^2)-4]$
$=2xy[(x+y)^2-2^2]=2xy(x+y-2)(x+y+2)$
P.s: lần sau bạn lưu ý ghi đầy đủ yêu cầu đề.


\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)

b: Ta có: \(5\left(x-1\right)^2-\left(1-x\right)\)
\(=5\left(x-1\right)^2+\left(x-1\right)\)
\(=\left(x-1\right)\left(5x-5+1\right)\)
\(=\left(x-1\right)\left(5x-4\right)\)
a: Ta có: \(5x^2-4xy-x^2y\)
\(=x\left(5x-4y-xy\right)\)

\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)
\(\Leftrightarrow x^3+8y^3=0\) (*)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)
\(\Leftrightarrow x^3-8y^3=16\) (**)
Từ (*) và (**) cộng theo vế:
\(\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Thay x = 2 và (*):
\(\Leftrightarrow2^3+8y^3=0\Leftrightarrow8y^3=-8\Leftrightarrow y^3=-1\Leftrightarrow y=-1\)
PTĐTTNT?
\(x^2-2xy+y^2+2x-2y\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)^2+2\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)+2\right]\)
\(=\left(x-y\right)\left(x-y+2\right)\)