K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

`x^2-2xy+y^2+1`

`=(x-y)^2+1>=1>0`

`=>đpcm`

20 tháng 11 2021

=(x-y)^2+1>0

= tui ko bt 

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

24 tháng 10 2018

\(x^2+y^2-2xy+x-y+1\)\(\left(x-y\right)^2+x-y+1\)

\(\left(x-y\right)=t\Rightarrow t^2-t+1=t^2-2.\frac{1}{2}t+\frac{1}{4}+\frac{3}{4}=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

=>đpcm

25 tháng 10 2018

\(x^2+y^2-2xy+x-y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(x-y\right)+1\)

\(=\left(x-y\right)^2+2\cdot\left(x-y\right)\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(=\left(x-y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x;y\)

P.s: cách này dễ hiểu hơn cách của Nguyễn Hưng Phát

24 tháng 10 2018

x2 + y2 - 2xy + x - y + 1 = (x - y)2 + (x - y) + 1

Đặt x - y = t

Ta có: x2 + y2 - 2xy + x - y + 1 = t2 + t + 1 = (t + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) > 0 với mọi t

15 tháng 6 2018

Vào tìm câu hỏi tương tự thử xem.

Chúc bạn học tốthihi

15 tháng 6 2018

giải ra giùm đi

15 tháng 6 2018

Giải:

a) \(x^2-2xy+y^2+1>0\)

\(\Leftrightarrow\left(x-y\right)^2+1>0\) (luôn đúng)

Vậy ...

b) Ta có:

\(x\le x^2\)

\(\Leftrightarrow x-x^2\le0\)

\(\Leftrightarrow x-x^2-1\le-1\)

\(\Leftrightarrow x-x^2-1< 0\) (đpcm)

Vậy ...

15 tháng 6 2018

a) Ta có: \(x^2-2xy+y^2+1=\left(x-y\right)^2+1>0;\forall x,y\)

Vì: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0;\forall x,y\\1>0\end{matrix}\right.\)

b) Ta có: \(x-x^2-1=-\left(x^2-x+1\right)\)

...................................= \(-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

...................................= \(-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

...................................= \(-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0,\forall x\)

Vì: \(\left\{{}\begin{matrix}-\left(x-\dfrac{1}{2}\right)^2< 0,\forall x\\-\dfrac{3}{4}< 0\end{matrix}\right.\)

NV
23 tháng 5 2019

Câu 1:

\(4x^2+8xy+28x+28y+8y^2+40=0\)

\(\Leftrightarrow\left(2x+2y+7\right)^2+4y^2-9=0\)

\(\Leftrightarrow\left(2x+2y+7\right)^2=9-4y^2\le9\)

\(\Rightarrow-3\le2x+2y+7\le3\)

\(\Leftrightarrow-8\le2y+2y+2\le-2\)

\(\Rightarrow-4\le x+y+1\le-1\)

\(\Rightarrow S_{max}=-1\) khi \(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

\(S_{min}=-4\) khi \(\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

Câu 2:

\(x^2+y^2=6xy\Rightarrow\frac{x}{y}+\frac{y}{x}=6\)

Đặt \(\frac{x}{y}=a>1\Rightarrow a+\frac{1}{a}=6\Rightarrow a^2-6a+1=0\Rightarrow a=3+2\sqrt{2}\)

\(\Rightarrow P=\frac{x+y}{x-y}=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}=\frac{a+1}{a-1}=\frac{3+2\sqrt{2}+1}{3+2\sqrt{2}-1}=\sqrt{2}\)

25 tháng 8 2015

x2-2xy+y2+1

=(x2-2xy+y2)+1

=(x-y)2+12

mà \(\left(x-y\right)^2\ge0;1^2>0\)

=> x2-2xy+y2+1 > 0 với mọi x,y \(\in\) R

26 tháng 7 2016

a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)

Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)

nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)

Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)

b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)

Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)

14 tháng 9 2018

a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y

=>x2+2xy+1+y2>1>0

b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x

=>x-x2-1<0

TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!