Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(7x^2+8xy+7y^2=10\)
\(\Rightarrow4x^2+8xy+4y^2+3x^2+3y^2=10\)
\(\Rightarrow4\left(x+y\right)^2+3\left(x^2+y^2\right)=10\)
\(\Rightarrow3\left(x^2+y^2\right)=10-4\left(x+y\right)^2\)
\(\Rightarrow S_{Max}=x^2+y^2=\dfrac{10-4\left(x+y\right)^2}{3}\le\dfrac{10}{3}\)
Đẳng thức xảy ra khi \(x=-y\)
Ta có: \(x^2+y^2\ge2xy\forall x,y\) đẳng thức xảy ra khi \(x=y\)
Thay vào \(7x^2+8xy+7y^2=10\) ta có:
\(7x^2+8x^2+7x^2=10\)
\(\Rightarrow22x^2=10\Rightarrow x^2=\dfrac{10}{22}\Rightarrow y^2=\dfrac{10}{22}\)
Khi đó \(S_{Min}=\dfrac{10}{22}+\dfrac{10}{22}=\dfrac{10}{11}\)
Đẳng thức xảy ra khi \(x=y\)
a) 5x2y2 + 20x2y4 - 35x5y3
= \(5x^2y^2\left(1+4y-7x^3y\right)\)
b) 2x ( x + y ) - 7x - 7y
\(=2x\left(x+y\right)-7\left(x+y\right)=\left(2x-7\right)\left(x+y\right)\)
c) 5x^2 ( x - 1 ) + 5 ( 1 - x )
\(5x^2\left(x+1\right)+5\left(1-x\right)=5x^2\left(x-1\right)-5\left(x-1\right)=\left(5x^2-5\right)\left(x-1\right)=5\left(x^2-1\right)\left(x+1\right)\)
= 5(x+1)(x-1)(x-1) = 5(x+1)(x-1)^2
Ta có : \(7x^2+8xy+7y^2=10\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+6\left(x^2+y^2\right)=10\)
\(\Rightarrow6\left(x^2+y^2\right)=10-\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2=\frac{10-\left(x+y\right)^2}{6}=\frac{5}{3}-\frac{\left(x+y\right)^2}{6}\)
Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\Rightarrow\frac{\left(x+y\right)^2}{6}\ge0\)
\(\Rightarrow x^2+y^2\le\frac{5}{3}\)
Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+y\right)^2=0\)
\(\Leftrightarrow x+y=0\)
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow7x^2-8x^2+7x^2=10\)
\(\Leftrightarrow6x^2=10\)
\(\Leftrightarrow x^2=\frac{5}{3}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{3}\end{cases}}\)
hoặc \(\hept{\begin{cases}x=-\frac{5}{3}\\y=\frac{5}{3}\end{cases}}\)
Ta dễ dàng chứng minh được : \(2xy\le x^2+y^2\forall x,y\)
\(\Rightarrow8xy\le4\left(x^2+y^2\right)\)
Ta có :\(7x^2+8xy+7y^2=7\left(x^2+y^2\right)+8xy=10\)
\(\Rightarrow7\left(x^2+y^2\right)=10-8xy\ge10-4\left(x^2+y^2\right)\)
\(\Rightarrow11\left(x^2+y^2\right)\ge10\)
\(\Rightarrow x^2+y^2\ge\frac{10}{11}\)
Dấu \("="\)xảy ra \(\Leftrightarrow x=y\)
\(\Leftrightarrow7x^2+8x^2+7x^2=10\)
\(\Leftrightarrow22x^2=10\)
\(\Leftrightarrow x^2=\frac{5}{11}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=\sqrt{\frac{5}{11}}\\x=y=-\sqrt{\frac{5}{11}}\end{cases}}\)
Vậy ...
a) Sửa đề: \(x^2+7y-y^2+7x\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+7\right)\)
b) Ta có: \(2x-30y^2x-3y+20x^2y\)
\(=2x\left(1+10xy\right)-3y\left(1+10yx\right)\)
\(=\left(1+10xy\right)\left(2x-3y\right)\)
c) Ta có: \(5x^3-5x^2y-10x^2+10xy\)
\(=5x\left(x^2-xy-2x+2y\right)\)
\(=5x\left[x\left(x-y\right)-2\left(x-y\right)\right]\)
\(=5x\left(x-y\right)\left(x-2\right)\)
x^2 + 2xy + y^2 + 7x + 7y + 10=0
=(x+y)^2+7(x+y)+10=0
=((x+y)+3,5)^2-2,25>=-2,25
Vậy gtnn là -2,25
a) \(4x^4+4x^3+5x^2+2x+1=\left[\left(2x^2\right)^2+4x^3+x^2\right]+2\left(2x^2+x\right)+1=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1=\left(2x^2+x+1\right)^2\)
b) \(3x^2+22xy+11x+37y+7y^2+10=\left(3x^2+21xy+6x\right)+\left(7y^2+xy+2y\right)+\left(5x+35y+10\right)\)
\(=3x\left(x+7y+2\right)+y\left(x+7y+2\right)+5\left(x+7y+2\right)\)
\(=\left(3x+y+5\right)\left(x+7y+2\right)\)
c) Không phân tích được.
d) \(x^4-8x+63=\left(x^4+4x^3+9x^2\right)-\left(4x^3+16x^2+36x\right)+\left(7x^2+28x+63\right)\)
\(=x^2\left(x^2+4x+9\right)-4x\left(x^2+4x+9\right)+7\left(x^2+4x+9\right)\)
\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)
c) \(x^4-7x^3+14x^2-7x+1=\left(x^4-3x^3+x^2\right)-\left(4x^3-12x^2+4x\right)+\left(x^2-3x+1\right)\)
\(=x^2\left(x^2-3x+1\right)-4x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)
\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)
a,x^2+2xy+7x+7y+y^2+10a
=(x^2+2xy+y^2)+(7x+7y)+10
=(x+y)^2+7(x+y)+10
=(x+y)(x+y+tx7)+10
Đặt x+y=t ,có :
t(t+7)+10
=t^2+7t+10
=t^2+2t+5t+10
=t(t+2)+5(t+2)
=(t+2)(t+5)
=(x+y+2)(x+y+5)