K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

a,x^2+2xy+7x+7y+y^2+10a

=(x^2+2xy+y^2)+(7x+7y)+10

=(x+y)^2+7(x+y)+10

=(x+y)(x+y+tx7)+10

Đặt x+y=t ,có :

t(t+7)+10

=t^2+7t+10

=t^2+2t+5t+10

=t(t+2)+5(t+2)

=(t+2)(t+5)

=(x+y+2)(x+y+5)

5 tháng 7 2016

a, 7x+7y

= 7(x+y)

b,2x2y-6xy2

= 2xy(x-3y)

c,3x(x-1)+7x2(x-1)

= (3x + 7x^2) (x-1)

= x(3+7x)(x-1)

d, 3x(x-a)+5a(a-x)

= 3x(x-a) - 5x(x-a)

= (3x - 5x) (x-a)

= (-2x) (x-a)

20 tháng 4 2017

Ta có: \(7x^2+8xy+7y^2=10\)

\(\Rightarrow4x^2+8xy+4y^2+3x^2+3y^2=10\)

\(\Rightarrow4\left(x+y\right)^2+3\left(x^2+y^2\right)=10\)

\(\Rightarrow3\left(x^2+y^2\right)=10-4\left(x+y\right)^2\)

\(\Rightarrow S_{Max}=x^2+y^2=\dfrac{10-4\left(x+y\right)^2}{3}\le\dfrac{10}{3}\)

Đẳng thức xảy ra khi \(x=-y\)

Ta có: \(x^2+y^2\ge2xy\forall x,y\) đẳng thức xảy ra khi \(x=y\)

Thay vào \(7x^2+8xy+7y^2=10\) ta có:

\(7x^2+8x^2+7x^2=10\)

\(\Rightarrow22x^2=10\Rightarrow x^2=\dfrac{10}{22}\Rightarrow y^2=\dfrac{10}{22}\)

Khi đó \(S_{Min}=\dfrac{10}{22}+\dfrac{10}{22}=\dfrac{10}{11}\)

Đẳng thức xảy ra khi \(x=y\)

27 tháng 9 2017

a) 5x2y2 + 20x2y4 - 35x5y3 

= \(5x^2y^2\left(1+4y-7x^3y\right)\)

b) 2x ( x + y ) - 7x - 7y

\(=2x\left(x+y\right)-7\left(x+y\right)=\left(2x-7\right)\left(x+y\right)\)

c) 5x^2 ( x - 1 ) + 5 ( 1 - x )

\(5x^2\left(x+1\right)+5\left(1-x\right)=5x^2\left(x-1\right)-5\left(x-1\right)=\left(5x^2-5\right)\left(x-1\right)=5\left(x^2-1\right)\left(x+1\right)\)

= 5(x+1)(x-1)(x-1) = 5(x+1)(x-1)^2

Ta có : \(7x^2+8xy+7y^2=10\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+6\left(x^2+y^2\right)=10\)

\(\Rightarrow6\left(x^2+y^2\right)=10-\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2=\frac{10-\left(x+y\right)^2}{6}=\frac{5}{3}-\frac{\left(x+y\right)^2}{6}\)

​Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\Rightarrow\frac{\left(x+y\right)^2}{6}\ge0\)

\(\Rightarrow x^2+y^2\le\frac{5}{3}\)

Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+y\right)^2=0\)

\(\Leftrightarrow x+y=0\)

\(\Leftrightarrow x=-y\)

\(\Leftrightarrow7x^2-8x^2+7x^2=10\)

\(\Leftrightarrow6x^2=10\)

\(\Leftrightarrow x^2=\frac{5}{3}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{3}\end{cases}}\)

hoặc \(\hept{\begin{cases}x=-\frac{5}{3}\\y=\frac{5}{3}\end{cases}}\)

Ta dễ dàng chứng minh được : \(2xy\le x^2+y^2\forall x,y\)

\(\Rightarrow8xy\le4\left(x^2+y^2\right)\)

Ta có :\(7x^2+8xy+7y^2=7\left(x^2+y^2\right)+8xy=10\)

\(\Rightarrow7\left(x^2+y^2\right)=10-8xy\ge10-4\left(x^2+y^2\right)\)

\(\Rightarrow11\left(x^2+y^2\right)\ge10\)

\(\Rightarrow x^2+y^2\ge\frac{10}{11}\)

Dấu \("="\)xảy ra \(\Leftrightarrow x=y\)

\(\Leftrightarrow7x^2+8x^2+7x^2=10\)

\(\Leftrightarrow22x^2=10\)

\(\Leftrightarrow x^2=\frac{5}{11}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=\sqrt{\frac{5}{11}}\\x=y=-\sqrt{\frac{5}{11}}\end{cases}}\)

Vậy ...

a) Sửa đề: \(x^2+7y-y^2+7x\)

\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+7\right)\)

b) Ta có: \(2x-30y^2x-3y+20x^2y\)

\(=2x\left(1+10xy\right)-3y\left(1+10yx\right)\)

\(=\left(1+10xy\right)\left(2x-3y\right)\)

c) Ta có: \(5x^3-5x^2y-10x^2+10xy\)

\(=5x\left(x^2-xy-2x+2y\right)\)

\(=5x\left[x\left(x-y\right)-2\left(x-y\right)\right]\)

\(=5x\left(x-y\right)\left(x-2\right)\)

27 tháng 9 2016

x^2 + 2xy + y^2 + 7x + 7y + 10=0

=(x+y)^2+7(x+y)+10=0

=((x+y)+3,5)^2-2,25>=-2,25

Vậy gtnn là -2,25

13 tháng 6 2016

a) \(4x^4+4x^3+5x^2+2x+1=\left[\left(2x^2\right)^2+4x^3+x^2\right]+2\left(2x^2+x\right)+1=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1=\left(2x^2+x+1\right)^2\)

b) \(3x^2+22xy+11x+37y+7y^2+10=\left(3x^2+21xy+6x\right)+\left(7y^2+xy+2y\right)+\left(5x+35y+10\right)\)

\(=3x\left(x+7y+2\right)+y\left(x+7y+2\right)+5\left(x+7y+2\right)\)

\(=\left(3x+y+5\right)\left(x+7y+2\right)\)

c) Không phân tích được.

d) \(x^4-8x+63=\left(x^4+4x^3+9x^2\right)-\left(4x^3+16x^2+36x\right)+\left(7x^2+28x+63\right)\)

\(=x^2\left(x^2+4x+9\right)-4x\left(x^2+4x+9\right)+7\left(x^2+4x+9\right)\)

\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)

13 tháng 6 2016

c) \(x^4-7x^3+14x^2-7x+1=\left(x^4-3x^3+x^2\right)-\left(4x^3-12x^2+4x\right)+\left(x^2-3x+1\right)\)

\(=x^2\left(x^2-3x+1\right)-4x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)

\(=\left(x^2-3x+1\right)\left(x^2-4x+1\right)\)