K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

a, Xét : \(\left(2x-1\right)^4=1\Leftrightarrow\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)

Xét : \(\left(81.2\right)\left(x-2\right)^2=1\Leftrightarrow162\left(x-2\right)^2=1\Leftrightarrow\left(x-2\right)^2=\frac{1}{162}\)

\(\orbr{\begin{cases}x-2=\sqrt{\frac{1}{162}}\\x-2=-\sqrt{\frac{1}{162}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{36+\sqrt{2}}{18}\\x=\frac{36-\sqrt{2}}{18}\end{cases}}\)

a, x2 = x

=> x2 - x =0

=> x(x-1) =0

=> x = 0 hoặc x=1

b, x2 = 2x

=> x2 - 2x =0

=> x(x-2) = 0

=> x= 0 hoặc x=2

c, x2 = -1

vì x2 \(\ge\)0 với mọi x 

=> x2 +1 >0

=> x2 > -1

=> x2 =-1 là vô lí

d, x2 =1

=> x = 1 hoặc x =-1

Bài làm :

\(a,x^2=x\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

\(b,x^2=2x\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(c,x^2=-1\)  ( sai )

Vì \(x^2\ge0\forall x\)

\(d,x^2=1\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Học tốt 

a) \(x^2=x\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

b) \(x^2=2x\Leftrightarrow x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

c) \(x^2=-1\)vì \(x^2\ge0,\forall x\)nên phương trình vô nghiệm.

d) \(x^2=1\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

17 tháng 9 2020

a, x2 = x

x2 - x = 0

x (x - 1) = 0

=> x = 0 hoặc x - 1 = 0

=> x = 0 hoặc x = 1

Vậy x thuộc {0 ; 1}.

b, x2 = 2x

x2 - 2x = 0

x (x - 2) = 0

=> x = 0 hoặc x - 2 = 0

=> x = 0 hoặc x = 2

Vậy x thuộc {0 ; 2}.

c, x2 = -1

Ta có: x2 >= 0 với mọi x

=> x2 = -1 (vô lí)

Vậy x thuộc tập hợp rỗng.

d, x2 = 1

=> x2 = 12 = (-1)2

=> x = 1 hoặc x = -1

Vậy x thuộc {-1 ; 1}.

7 tháng 9 2019

Câu hỏi của mù tạt - Toán lớp 7 - Học toán với OnlineMath

20 tháng 9 2017

hoc moi lop 5

3 tháng 7 2019

\(\left|3-2x\right|+\left|4y+5\right|=0\)

Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)

Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)

Mấy bài khác tương tự

3 tháng 7 2019

|x - y| + |y + 9/25| \(\le\)0

Ta có: |x - y| \(\ge\)\(\forall\)x,y

           |y + 9/25| \(\ge\) 0 \(\forall\)y

=> |x - y| + |y + 9/25|  \(\ge\)\(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)

Vậy ...

(x  + y)2012 + 2013|y - 1| = 0

Ta có: (x + y)2012 \(\ge\)\(\forall\)x, y

      2013|y - 1| \(\ge\)\(\forall\)y

=> (x + y)2012 + 2013|y - 1| \(\ge\)\(\forall\)x,y

Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy ...

25 tháng 5 2020

a) 2x^2 = 3x                               b) (x - 5)^2 = x - 5

=> 3x - 2x^2 = 0                        =>(x - 5)^2 - (x - 5) = 0 

=> x.(3 - 2x) = 0                        =>      (x - 5).(x - 6) = 0

=> x = 0 hoặc 3 - 2x = 0           => x - 5 = 0 hoặc x - 6 = 0

=> x = 0 hoặc x = 3/2                => x = 5 hoặc x = 6

a)Ta có:\(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\Rightarrow\left(x-1\right)\left(x+2\right)\le0\)(Do\(2x^2+1>0\)

suy ra x-1 và x+2 trái dấu

Mà x-1<x+2

\(\Rightarrow\hept{\begin{cases}x-1\le0\Rightarrow x\le1\\x+2\ge0\Rightarrow x\ge-2\end{cases}}\)

\(\Rightarrow-2\le x\le1\)

b)Ta có Nếu \(x\ge2\Rightarrow x^{2016}\ge2^{2016}>2015\left(L\right)\)

Do đó x<2 mà\(x\inℕ\)

\(\Rightarrow x\in\left\{0;1\right\}\)

Với x=0 thì y=2015/2013(Loại)

Với x=1 thì y=2014/2013(Loại)

Vậy...............

19 tháng 1 2020

                                                             Bài giải

a, \(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\)

Do \(\left(2x^2+1\right)\ge0\)

Nên để tích trên bé hơn hoặc bằng 0 thì \(\left(x-1\right)\) và \(\left(x+2\right)\) trái dấu hoặc bằng 0

Mà \(x-1< x+2\)

\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}}\Rightarrow\text{ }-2\le x\le1\)

Mà \(x\in N\text{ }\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)