Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
xét delta có
25 -4(-m-3)
= 25 + 4m + 12
= 4m + 37
để phương trình có nghiệm kép thì delta = 0
=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)
2.
a) xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có nghiệm kép thì delta = 0
=> -4m + 37 = 0
=> m = \(\dfrac{37}{4}\)
b)
xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có 2 nghiệm phân biệt thì delta > 0
=> -4m + 37 > 0
=> m < \(\dfrac{37}{4}\)
a, Thay m=1 vào phương trình, ta được: x2-3x+2=0
<=> x2-2x-x+2=0
<=> x(x-2) - (x-2)=0
<=> (x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy phương trình có tập nghiệm S={1;2}
b, Với m khác 0, phương trình trở thành phương trình bậc 2 có:
Delta = (2m+1)2 - 4m(m+1)
= 4m2+4m+1 - 4m2-4m
= 1>0
Vậy phương trình luôn có 2 nghiệm phân biệt với m khác 0.
c, Vì phương trình có delta>0 với mọi giá trị của m khác 0 nên không có giá trị nào của m để phương trình có nghiệm kép.
a/ Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(-3\right)^2-4.\left(2m-1\right)>0\)
\(\Leftrightarrow13-8m>0\)
\(\Leftrightarrow m< \frac{13}{8}\)
b/ Để phương trình có nghiệm kép thì
\(\Delta=1^2-4.m=0\)
\(\Leftrightarrow m=0,25\)
Nghiệm kép đó là: \(x=-0,5\)
a. 5x2 + 2mx – 2m +15 =0 (1)
Ta có: Δ'=m2 – 5.(-2m +15) = m2 +10m -75
Phương trình (1) có nghiệm kép khi và chỉ khi:
Δ'= 0 ⇔ m2 + 10m – 75 = 0
Δ'm = 52 -1.(-75) = 25 +75 = 100 > 0
√(Δ'm) = √100 =10
Phương trình có 2 nghiệm phân biệt:
Vậy m =5 hoặc m=-15 thì phương trình đã cho có nghiệm kép
b. mx2 – 4(m -1)x -8 =0 (2)
Phương trình (2) có nghiệm kép khi và chỉ khi: m≠ 0 và Δ'=0
Ta có: Δ'=[-2(m-1)]2 – m(-8)=4(m2 -2m +1) +8m
=4m2– 8m +4 +8m = 4m2 +4
Vì 4m2 +4 luôn luôn lớn hơn 0 nên Δ' không thể bằng 0 .Vậy không có giá trị nào của m để phương trình có nghiệm kép
a) Phương trình x 2 – 2 ( m – 1 ) x + m 2 = 0 (1)
Có a = 1; b’ = -(m – 1); c = m 2
b) Phương trình (1):
+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m >
+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m =
+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m <
Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < ; có nghiệm kép khi m = và vô nghiệm khi m >
Phương trình (1):
+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m >
+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m =
+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m <
Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < ; có nghiệm kép khi m = và vô nghiệm khi m >
\(\text{Δ}=\left(3-m\right)^2-4\left(-m-1\right)\)
\(=m^2-6m+9+4m+4=m^2-2m+13\)
\(=\left(m-1\right)^2+12>0\)
Vậy: Phương trình không thể có nghiệm kép
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m < \(\dfrac{1}{2}\)
Phương trình vô nghiệm khi m > \(\dfrac{1}{2}\)
Phương trình có nghiệm kép khi m = \(\dfrac{1}{2}\).
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m <
Phương trình vô nghiệm khi m >
Phương trình có nghiệm kép khi m = .
\(\Delta=\left[-\left(2m+1\right)\right]^2-4m^2=4m^2+4m+1-4m^2=4m+1\)
Để (1) có nghiệm kép :
\(\Delta=0\Leftrightarrow4m+1=0\Leftrightarrow m=-\dfrac{1}{4}\)