K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

Phương trình:

\(x^2-2\left(m+1\right)x+m+1=0\)

\(\Leftrightarrow x^2-2\left(m+1\right)x+\left(m+1\right)^2-\left(m+1\right)^2+\left(m+1\right)=0\)

\(\Leftrightarrow\left(x-\left(m+1\right)\right)^2-\left(m+1\right)\left(m+1-1\right)=0\)

\(\Leftrightarrow\left(x-\left(m+1\right)\right)^2-m\left(m+1\right)=0\)

Phương trình có nghiệm kép khi: \(m\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}\)

Với m = 0, nghiệm kép: \(x_1=x_2=1>0\)thỏa mãn đề bài.

Với m = -1, nghiệm kép: \(x_1=x_2=0\)không thỏa mãn đề bài - Loại.

Kết luận: Với m = 0 thì phương trình có nghiệm kép dương là : 1.

9 tháng 6 2016

Xin kết luận lại:

Với m=0 thì phương trình có nghiêm kép dương. Nghiệm kép dương đó là: 1.

3 tháng 5 2022

1. 

xét delta có 

25 -4(-m-3)

= 25 + 4m + 12 

= 4m + 37 

để phương trình có nghiệm kép thì delta = 0 

=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)

2. 

a) xét delta 

25 - 4(m-3) = 25 - 4m + 12 = -4m + 37 

để phương trình có nghiệm kép thì delta = 0 

=> -4m + 37 = 0 

=> m = \(\dfrac{37}{4}\)

b)

xét delta 

25 - 4(m-3) = 25 - 4m + 12 = -4m + 37 

để phương trình có 2 nghiệm phân biệt thì delta > 0 

=> -4m + 37 > 0 

=> m < \(\dfrac{37}{4}\)

6 tháng 2 2022

a) thay m=5 vào pt (1) dc

\(\left(5-4\right)x^2-2.5x+5-2=0\)

<=>\(x^2-10x+3=0\)

<=>\(\left(x-5-\sqrt{22}\right)\left(x-5+\sqrt{22}\right)=0\)

<=>\(\left[{}\begin{matrix}x=5+\sqrt{22}\\x=5-\sqrt{22}\end{matrix}\right.\)

b)Thay x=-1 vào pt (1) dc

\(\left(m-4\right)\left(-1\right)^2-2m\left(-1\right)+m-2=0\)

<=>\(m-4+2m+m-2=0\)

<=>\(4m=6\)

<=>m=\(\dfrac{3}{2}\)

Pt có nghiệm nên

Áp dụng hệ thức Vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-4}\left(2\right)\\x_1.x_2=\dfrac{m-2}{m-4}\left(3\right)\end{matrix}\right.\)

Thay m=\(\dfrac{3}{2}\)và x=-1 vào pt (2) ta dc

\(-1+x=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-4}=-\dfrac{6}{5}\)

=>x=\(-\dfrac{1}{5}\)

c)\(\Delta'=\left[-\left(m\right)\right]^2-\left(m-4\right)\left(m-2\right)=m^2-\left(m^2-6m+8\right)=6m-8\)

pt có nghiệm kép <=>\(\Delta'=0\)

                             <=>\(6m-8=0< =>m=\dfrac{4}{3}\)

 

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

8 tháng 4 2018

a) Tìm m sao cho \(\Delta=0\)rồi thay vào pt tìm nghiệm
b)\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=2^2-2.\left(1+2m\right)=8\Rightarrow m=-\frac{3}{2}\)

8 tháng 4 2018

Cho mình bổ sung thêm phần xác định m chút nha

Áp dụng hệ thức viets vào phương trình (1 ) ta có

\(x_1+x_2=S=-2;x_1.x_2=p=1+2m\)  Hai số x1 và x2 tồn tại khi \(S^2-4P\ge0\Leftrightarrow4-4\left(1+2m\right)\ge0\)=> \(-8m\ge0\Rightarrow m\le0\)

9 tháng 2 2022

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

9 tháng 2 2022

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)