Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ 5x ( 12x + 7 ) - ( 3x + 1 ) ( 20x - 5 ) = -100
\(\Leftrightarrow\) 60x2 + 35x - 60x2 + 15x - 20x + 5 = -100
\(\Leftrightarrow\) 30x = -100 - 5
\(\Leftrightarrow\) x = - 3,5
4/ ( x + 5 ) 2 + ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 + x2 - 4 = 0
\(\Leftrightarrow\) 2x2 + 10x + 21 = 0
---> Phương trình vô nghiệm
Sửa đề bài : 4/ ( x + 5 ) 2 - ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 - x2 + 4 = 0
\(\Leftrightarrow\) 10x = - 29
\(\Leftrightarrow\) x = \(-\dfrac{29}{10}\)
Vậy phương trình có nghiệm.......
1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)
hoặc \(\int^{x-2y=10}_{y=0}\) hoặc \(\int^{x-2y=6}_{y=8}\) hoặc \(\int^{x-2y=8}_{y=6}\)
từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)
2. 4x2 + 2y2 - 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên
vậy phương trình đã cho không có nghiệm nguyên
1,\(B=-x^2+20x-1=-\left(x^2-20x+1\right)\)
\(=-\left(x^2-2.10x+100-99\right)=-\left(x-10\right)^2+99\le99\)
Dấu ''='' xảy ra khi x = 10
Vậy GTLN B là 99 khi x = 10
2, \(E=x^2+2x\left(y+1\right)+y^2+2y+1\)
\(2E=2x^2+4x\left(y+1\right)+2y^2+4y+2\)
\(=2x^2+4xy+4x+2y^2+4y+2\)
\(=x^2+4xy+4y^2+x^2+4x+4-2\left(y^2-2y+1\right)\)
\(=\left(x+2y\right)^2+\left(x+2\right)^2-2\left(y-1\right)^2\ge0\)
Dấu ''='' xảy ra khi x = -2 ; y = 1
Vậy GTNN E là 0 khi x = -2 ; y = 1
a) \(x^2+10x=0\)
\(x\left(x+10\right)=0\)
\(\left[{}\begin{matrix}x=0\\x=-10\end{matrix}\right.\)
b) \(\left(x-7\right)^3=x-7\)
\(\left(x-7\right)^3-\left(x-7\right)=0\)
\(\left(x-7\right)\left[\left(x-7\right)^2-1\right]=0\)
\(\left(x-7\right)\left(x-7-1\right)\left(x-7+1\right)=0\)
\(\left(x-7\right)\left(x-8\right)\left(x-6\right)=0\)
\(\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
c) \(x^2-20x+100=0\)
\(x^2-10x-10x+100=0\)
\(x\left(x-10\right)-10\left(x-10\right)=0\)
\(\left(x-10\right)\left(x-10\right)=0\)
\(\left(x-10\right)^2=0\)
=> x = 10
a) \(x^2+10x=0\)
\(\Leftrightarrow x\left(x+10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+10=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-10\end{matrix}\right.\)
Vậy..
b) \(\left(x-7\right)^3=\left(x-7\right)\)
\(\Leftrightarrow\left(x-7\right)^3-\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left[\left(x-7\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-8\right)\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-7=0\\x-8=0\\x-6=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
Vậy..
c) \(x^2-20x+100=0\)
\(\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
1)
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
=>đpcm
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2=-24\)
=>đpcm
2,
a) \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)
\(\Leftrightarrow60x^2+35x-60x^2+15x=-100\)
\(\Leftrightarrow50x=-100\)
\(\Leftrightarrow x=-2\)
b) \(0,6x\left(x-0,5\right)-0,3x\left(2x+1,3\right)=0,138\)
\(\Leftrightarrow0,6x^2-0,3x-0,6x^2-0,39x=0,138\)
\(\Leftrightarrow-0,69x=0,138\)
\(\Leftrightarrow x=-0,2\)
Câu 1:
a)\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^2-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^2-x+3\)
\(=x^3+3\)(ko thể CM)
b)\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)(đpcm)
x6 - 20x5 - 20x4 - 20x3 - 20x2 - 20x + 3 tại x = 21
x = 21 => 20 = x - 1
Thế vô ta được:
x6 - ( x - 1 )x5 - ( x - 1 )x4 - ( x - 1 )x3 - ( x - 1 )x2 - ( x - 1 )x + 3
= x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x + 3
= x + 3
= 21 + 3 = 24
\(x^2=20x-100\)
\(\Leftrightarrow x^2-20x+100=0\)
\(\Leftrightarrow x-10=0\)
hay x=10