K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Với x^2=1 => x=1 hoặc -1

Với x^2 >1 => có 2 trường hơpj

Th1 x>0 

Th2 x<0

Với mọi x khác 1 và 0 thuộc Z đều thỏa mãn 

13 tháng 8 2019

1) tìm x : 

5x. (x - 3 ) + 7.(x - 3 ) = 0

<=> ( x -3 ) . ( 5x +7 ) = 0

<=> x - 3 = 0 hoặc 5x + 7 = 0 

<=> x = 3 hoặc x = -7/5

Vậy x € { 3 ; -7/5 }

3 ) chứng mình rằng : 

1996 + 71995 + 71994 chia hết cho 57 

71996 + 71995 + 71994 

<=> 71994  . 72 + 71994 .7 + 71994

<=> 71994 . ( 7 + 7 + 1 ) 

<=> 71994 .  57 chia  hết cho 57 ( vì 57 chia hết cho 57 )  ( đ..p.c.m ) 

13 tháng 8 2019

Bài 1 : \(5x\left(x-3\right)+7\left(x-3\right)=0.\)

\(\Rightarrow5x^2-15x+7x-21=0\)

\(\Rightarrow5x^2-8x-21=0\)

\(\Rightarrow5x^2-15x+7x-21=0\)

\(\Rightarrow5x\left(x-3\right)+7\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(5x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{7}{5}\end{cases}}}\)

Bài 2 : \(a,A=0\Rightarrow x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x\in\left\{0;3\right\}\)

\(b,A>0\Rightarrow x^2-3x>0\Rightarrow x\left(x-3\right)>0\)

TH1 : \(\hept{\begin{cases}x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}\Rightarrow}x>3}\)

TH2 : \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}\Rightarrow}x< 3}\)

C, tương tự 

Bài 3 : \(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)\)

\(=7^{1994}.57\)\(⋮\)\(7\)

\(\Rightarrow7^{1996}+7^{1995}+7^{1994}⋮\)\(7\)

29 tháng 9 2018

làm cái này dài lắm nên mk sẽ làm riêng từng bài nha! 
\(1,a,\left(2x-3\right)^2-4\left(x+1\right)\left(x-1\right)=4x^2-12x+9-4\left(x^2-1\right)\)

                                                                            \(=4x^2-12x+9-4x^2+4\)

                                                                              \(=-12x+13\)

  \(b,x\left(x^2-2\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3-2x-\left(x^3-1\right)\)

                                                                                 \(=-2x+1\)

29 tháng 9 2018

1, rút gọn :

(2x-3)2-4(x+1)(x-1)

=(2x-3)-4(x2-1)

22 tháng 8 2020

A = x2 - 4x + 1 

A = ( x2 - 4x + 4 ) - 3

A = ( x - 2 )2 - 3

( x - 2 )2 ≥ 0 ∀ x => ( x - 2 )2 - 3 ≥ -3

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MinA = -3 <=> x = 2

B = 4x2 + 4x + 11

B = 4( x2 + x + 1/4 ) + 10

B = 4( x + 1/2 )2 + 10

4( x + 1/2 )2 ≥ 0 ∀ x => 4( x + 1/2 )2 + 10 ≥ 10

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 )

C = [ ( x - 1 )( x + 6 ) ][ ( x + 3 )( x + 2 ) ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 62 = ( x2 + 5x )2 - 36

( x2 + 5x )2 ≥ 0 ∀ x => ( x2 + 5x )2 - 36 ≥ -36

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

=> MinC = -36 <=> x = 0 hoặc x = -5

D = 5 - 8x - x2

D = -( x2 + 8x + 16 ) + 21

D = -( x + 4 )2 + 21

-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 21 ≤ 21

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxD = 21 <=> x = -4

E = 4x - x2 + 1

E = -( x2 - 4x + 4 ) + 5

E = -( x - 2 )2 + 5

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 5 ≤ 5 

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxE = 5 <=> x = 2

11 tháng 9 2016

\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)

\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)

\(\Leftrightarrow1+2+3+4+..+x=15\)

\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)

\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)

Vậy x=5

Bài 2:

Bậc của đơn thức là 2+5+3=10

Bài 3:

\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)

\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)

+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành

\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)

+)TH2: \(x< \frac{1}{4}\) thì pt trở thành

\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)

Vậy x={-9/4;11/4}

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

27 tháng 10 2018

a ) Đề sai

b ) \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

c ) \(x-x^2-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\forall x\left(đpcm\right)\)