Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x - 3 = 4 - 5x
=> 2x + 5x = 4 + 3
=> 7x = 7
=> x = 7 : 7
=> x = 1
b) 5.(x - 1)3 = 20.(x - 1)
=> 5.x3 - 3x3 + 3x - 1 = 20x - 1
=> x3(5 - 3) + 3x = 20x - 1 + 1
=> 2x3 + 3x = 20x
=> 2x3 = 20x - 3x
=> 2.x3 = 17x
=> 2.x3 - 17x = 0
=> x(2x2 - 17) = 0
=> x = 0 hoặc 2x2 - 17 = 0
=> 2x2 = 17
=> x2 = 8,5
=> x = \(\sqrt{8,5}\)
c) 9x2 - 16 = 3x - 4
=> 9x2 - 3x = -4 + 16
=> x(9x - 3) = 12
=> x[3(3x - 1)] = 12
=> x(3x - 1) = 12 : 3
=> x(3x - 1) = 4 chju nhe
to rat ngu
a) 5x2 -20
= 5(x2 -4)
=5 (x2 -22)
= 5(x-2)(x+2)
b) 16 - (x+y)2
=42 -(x+y)2
= (4-x-y)(4+x+y)
a, \(5\left(x^2-4\right)=5\left(x-2\right)\left(x+2\right)\)
b, \(16-\left(x+y\right)^2=\left(4-x-y\right)\left(4+x+y\right)\)
mấy bài này áp dụng hđt là được nhé
a) x2 - 2x + 1 = 16 ( như này chứ nhỉ ? )
<=> x2 - 2x + 1 - 16 = 0
<=> x2 - 2x - 15 = 0
<=> x2 + 3x - 5x - 15 = 0
<=> x( x + 3 ) - 5( x + 3 ) = 0
<=> ( x + 3 )( x - 5 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=5\end{cases}}\)
b) ( 5x + 1 )2 - ( 5x - 3 )( 5x + 3 ) = 30
<=> 25x2 + 10x + 1 - ( 25x2 - 9 ) = 30
<=> 25x2 + 10x + 1 - 25x2 + 9 = 30
<=> 10x + 10 = 30
<=> 10x = 20
<=> x = 2
c) ( x - 1 )( x2 + x + 1 ) - x( x + 2 )( x - 2 ) = 5 ( đã sửa đề )
<=> x3 - 1 - x( x2 - 4 ) = 5
<=> x3 - 1 - x3 + 4x = 5
<=> 4x - 1 = 5
<=> 4x = 6
<=> x = 6/4 = 3/2
\(A=\dfrac{6x}{5x-20}-\dfrac{x}{x^2-8x+16}\)
\(ĐKXĐ:x\ne\pm4\)
\(\Leftrightarrow A=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)
\(\Leftrightarrow A=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{x\left(6x-29\right)}{5\left(x-4\right)^2}\)
a) \(2.\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2.\left(x+5\right)-x.\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
Vậy \(S=\left\{-5,2\right\}\)
b) \(x^3-5x^2-4x+20=0\)
\(\Leftrightarrow x^2\left(x-5\right)-4.\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}\)
Vậy \(S=\left\{5,\pm2\right\}\)
c) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{4,-\frac{3}{2}\right\}\)
a) ( 2x - 1 )( 2x + 1 ) - 4( x2 + x ) = 16
⇔ 4x2 - 1 - 4x2 - 4x = 16
⇔ -4x - 1 = 16
⇔ -4x = 17
⇔ x = -17/4
b) 5x( x - 2013 ) - x + 2013 = 0
⇔ 5x( x - 2013 ) - ( x - 2013 ) = 0
⇔ ( x - 2013 )( 5x - 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2013=0\\5x-1=0\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}\)
a) \(\left(2x-1\right)\left(2x+1\right)-4.\left(x^2+x\right)=16\)
\(4x^2-1-4x^2-4x=16\)
\(-1-4x=16\)
\(-4x=17\)
\(x=-\frac{17}{4}\)
b) \(5x\left(x-2013\right)-x+2013=0\)
\(\left(x-2013\right)\left(5x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2013=0\\5x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}}\)
\(\Rightarrow x^2-5x-36=0\Rightarrow x\left(x-9\right)+4\left(x-9\right)=0\Rightarrow\left(x-9\right)\left(x+4\right)=0\Rightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)