Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì (x-2)2 có số mũ chẵn nên (x-2)2>=0 <1>
(2y+3)4có số mũ chẵn nên (2y+3)4=0 <2>
từ <1> và <2> suy ra :
(x-2)2=0 (2y+3)4=0
x-2=0 2y+3=0
x=2 2y=-3
y=-3/2
y=f(x)=5x2 -4
a) f(x) =5x2 -4 = 5(-x)2 -4 = f (-x) ; vì (-x)2 =x 2
b) x1<x2<0 => x1+x2<0 và x1 - x2 <0
f(x1) - f(x2) = (5x12- 4 )- (5x22 -4) = 5(x1-x2)(x1+x2) >0 ( theo trên)
=> f(x1) > f(x2)
\(1)-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
\(\Rightarrow-4x^2-\left(-20x\right)-16x+4x^2=-3\)
\(\Rightarrow20x-14x=-3\)
\(\Rightarrow6x=-3\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
\(2)\) Theo bài ra, ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
\(\Rightarrow\sqrt[3]{\left(\dfrac{x}{2}\right)^3}=\sqrt[3]{\left(\dfrac{y}{4}\right)^3}=\sqrt[3]{\left(\dfrac{z}{6}\right)^3}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)
\(\Rightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Suy ra:
\(+)\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}.4=1=\left(\pm1\right)^2\Rightarrow x=\pm1\)
\(+)\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{16}.4=\dfrac{1}{4}=\left(\pm\dfrac{1}{2}\right)^2\Rightarrow y=\pm\dfrac{1}{2}\)
\(+)\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{36}.4=\dfrac{1}{9}=\left(\pm\dfrac{1}{3}\right)^2\Rightarrow z=\pm\dfrac{1}{3}\)
Vậy \(\left(x;y;z\right)\in\left\{\left(-1;-\dfrac{1}{2};-\dfrac{1}{3}\right);\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\right\}\)
\(\text{Do}\left(\frac{1}{3}-2x\right)^{120}\ge0\text{ với }\forall x\in Q\)
\(\left(3y+x\right)^{104}\ge0\text{ với }\forall x,y\in Q\)
\(\Rightarrow\text{}\left(\frac{1}{3}-2x\right)^{120}+\left(3y+x^{104}\right)\ge0\)
\(\text{Mà }\left(\frac{1}{3}-2x\right)^{120}+\left(3y+x^{104}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(\frac{1}{3}-2x\right)^{120}=0\\\left(3y-x\right)^{104}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{3}-2x=0\\3y-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\frac{1}{3}\\3y-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{6}\\3y-\frac{1}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{6}\\3y=\frac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{6}\\y=\frac{1}{18}\end{matrix}\right.\)
Vậy \(x=\frac{1}{6},y=\frac{1}{18}\)
x2 + 1/4x = 0
<=> ( x + 1/8 )2 - 1/64 = 0
<=> ( x + 1/8 )2 = 1/64
<=> \(\orbr{\begin{cases}x+\frac{1}{8}=\frac{1}{8}\\x+\frac{1}{8}=-\frac{1}{8}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-\frac{1}{4}\end{cases}}\)
( x + 1/2 ) ( x - 1/2 ) > 0
<=> \(\orbr{\begin{cases}x_1+\frac{1}{2}>0\\x_2-\frac{1}{2}>0\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1+\frac{1}{2}< 0\\x_2-\frac{1}{2}< 0\end{cases}}\)
<=> \(\orbr{\begin{cases}x_1>-\frac{1}{2}\\x_2>\frac{1}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1< -\frac{1}{2}\\x_2< \frac{1}{2}\end{cases}}\)
<=> x > 1/2 hoặc x < - 1/2
\(\frac{x+3}{x-2}\le0\)
<=> \(\frac{x-2+5}{x-2}\le0\)
<=> 1 + \(\frac{5}{x-2}\le0\)
<=> \(\frac{5}{x-2}\le-1\)
\(\Leftrightarrow x-2\le-5\)
\(\Leftrightarrow x\le-3\)