K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

\(x^2-14x+13=0\)

\(\Rightarrow x^2-2x.7+7^2-7^2+13=0\)

\(\Rightarrow\left(x^2-2x.7+7^2\right)-7^2+13=0\)

\(\Rightarrow\left(x-7\right)^2-49+13=0\)

\(\Rightarrow\left(x-7\right)^2-36=0\)

\(\Rightarrow\left(x-7\right)^2=36\)

\(\Rightarrow\left(x-7\right)^2=\pm6^2\)

\(\Rightarrow\orbr{\begin{cases}x-7=6\\x-7=-6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=13\\x=1\end{cases}}\)

Vậy ...

7 tháng 8 2018

\(x^2-14x+13=0\)

\(x^2-14x+49-36=0\)

\(\left(x^2-14x+19\right)-36=0\)

\(\left(x-7\right)^2-6^2=0\)

\(\left(x-7-6\right)\left(x-7+6\right)=0\)

\(\left(x-13\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-13=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=13\\x=1\end{cases}}\)

10 tháng 7 2019

\(3x^2+x+11=0\)

\(x^2+x+\frac{1}{4}+2x^2+\frac{43}{4}=0\) 

\(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}=0\) 

Mà \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}\ge\frac{43}{4}\forall x\)

=> PT vô nghiêm

\(3x^2+x+11=0\)

\(\Leftrightarrow x^2+\frac{1}{3}x+\frac{11}{3}=0\)

\(\Leftrightarrow x^2+2\frac{1}{3}.\frac{1}{2}x+\frac{1}{36}+\frac{131}{36}=0\)

\(\Leftrightarrow\left(x+\frac{1}{6}\right)^2=-\frac{131}{36}\left(voly\right)\)

=> Phương Trình Vô Nghiệm

21 tháng 10 2017

5x^2 +5y^2 +8xy -2x +2y +2 =0

(x^2 -2x +1)+(y^2+2y+1)+4(x^2+2xy+y^2)=0

(x-1)^2+(y+1)^2+4(x+y)^2=0

vì \(\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0,\left(x+y\right)^2\ge0\)

suy ra x=1 ,y=-1 

Cj lm 2 cách nha,e kham khảo cách nào cx đc.

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

TH1 : \(2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)

TH2 : \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

TH3 : \(2x+3=0\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

\(\left(2x^3+4x^2+2x+x^2+2x+1\right)\left(2x+3\right)=0\)

\(\left(2x^3+5x^2+4x+1\right)\left(2x+3\right)=0\)

\(4x^4+6x^3+10x^3+15x^2+8x^2+12x+2x+3=0\)

\(4x^4+16x^3+23x^2+14x+3=0\)

\(\left(4x^2+6x+2x+3\right)\left(x+1\right)\left(x+1\right)=0\)

\(\left(2x+3\right)\left(2x-1\right)\left(x+1\right)^2=0\)

Tương tự như trên .... 

8 tháng 5 2020

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=0\)

Th1: \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)

Th2: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)

Th3: \(2x+3=0\Rightarrow2x=-3\Rightarrow x=-\frac{3}{2}\)

30 tháng 7 2019

Đề bài: Giải bất phương trình :

a) x2 + 5x + 6 ≥ 0

⇔x2+5x ≥ -6

⇔x(x+5) ≥ -6

⇔ x ≥ -6 hoặc x+5 ≥ -6

⇔x ≥ -6 hoặc x ≥ -11

b) x2 - 9x + 20 ≤ 0

⇔x(x-9) ≤ -20

⇔ x ≤ 20 hoặc x-9 ≤ - 20

⇔ x ≤ 20 hoặc x ≤ -11

Thấy đúng thì tick nha

a) \(x^2+5x+6\ge0\)

\(\Leftrightarrow x\left(x+5\right)\ge-6\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-6\\x+5\ge-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-6\\x\ge-11\end{matrix}\right.\)

\(\Leftrightarrow x\ge-6\)

b) \(x^2-9x+20\le0\)

\(\Leftrightarrow x\left(x-9\right)\le-20\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-20\\x-9\le-20\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-20\\x\le-11\end{matrix}\right.\)

\(\Leftrightarrow x\le-20\)

17 tháng 7 2017

\(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(4x^2+8x+3\right)-18=0\)

Đặt \(x^2+2x+1=a\ge0\)

\(\Rightarrow a\left(4a-1\right)-18=0\)

\(\Leftrightarrow4a^2-a-18=0\)

\(\Leftrightarrow\left(4a^2+8a\right)+\left(-9a-18\right)=0\)

\(\Leftrightarrow\left(a+2\right)\left(4a-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(l\right)\\a=\frac{9}{4}\end{cases}}\)

\(\Rightarrow x^2+2x+1=\frac{9}{4}\)

\(\Leftrightarrow4x^2+8x-5=0\)

\(\Leftrightarrow\left(4x^2-2x\right)+\left(10x-5\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\)

22 tháng 8 2021

\(f\left(x\right)=x^3-x^2+3x-3\)

\(=x^2\left(x-1\right)+3\left(x-1\right)\)

\(=\left(x^2+3\right)\left(x-1\right)\)

Để \(f\left(x\right)>0\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\)

Mà \(x^2\ge0\forall x\Leftrightarrow x^2+3>0\)

\(\Rightarrow x-1>0\Leftrightarrow x=1\)

\(h\left(x\right)=4x^3-14x^2+6x-21< 0\)

\(\Leftrightarrow0\left(x-\frac{7}{2}\right)\left(4x^2+6\right)< 0\)

Mà \(4x^2+6>0\forall x\Leftrightarrow h\left(x\right)< 0\Leftrightarrow x-\frac{7}{2}< 0\Leftrightarrow x< \frac{7}{2}\)

12 tháng 11 2021

f(x)=x3−x2+3x−3f(x)=x3−x2+3x−3

=x2(x−1)+3(x−1)=x2(x−1)+3(x−1)

=(x2+3)(x−1)=(x2+3)(x−1)

Để f(x)>0⇔(x2+3)(x−1)>0f(x)>0⇔(x2+3)(x−1)>0

Mà x2≥0∀x⇔x2+3>0x2≥0∀x⇔x2+3>0

⇒x−1>0⇔x=1⇒x−1>0⇔x=1

h(x)=4x3−14x2+6x−21<0h(x)=4x3−14x2+6x−21<0

⇔0(x−72)(4x2+6)<0⇔0(x−72)(4x2+6)<0

Mà 4x2+6>0∀x⇔h(x)<0⇔x−72<0⇔x<72

21 tháng 10 2017

a, \(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+2y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2.1-2.1=0\\x=1\\y=-1\end{matrix}\right.\)

Vậy ...

b, \(y^2+2y+4^x-2^{x+1}+2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(4^x-2^{x+1}+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}\left(y+1\right)^2=0\\\left(2^x-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\2^x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)

Vậy ...

30 tháng 3 2020

a) x^4 - 3x^3 + 3x - 1 = 0

<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0

<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0

<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

17 tháng 1 2016

4x2+4x+1=(2x+1)(3x-2)

=>(2x+1)2=(2x+1)(3X-2)

=>(2x+1)2-(2x+1)(3x-2)=0

=>(2x+1)(2x+1-3x+2)=0

=>(2x+1)(3-x)=0

=>

  1. 2x+1=0
  2. 3-x=0

=>

  1. x=-0,5
  2. x=3