\(x^2-10x+27=\sqrt{6-x}+\sqrt{4-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

DKXD: \(4\le x\le6\)

Ta có:

\(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\)

Xét: \(x^2-10x+27=\left(x-5\right)^2+2\ge2\)

Dau "=" xảy ra khi x= 5 (1)

Lại xét: \(\sqrt{6-x}.1+\sqrt{x-4}.1\le\sqrt{\left(6-x+x-4\right)\left(1+1\right)}\)(BDT BU-NHI-A..)

\(=2\). Dau '=" xảy ra khi x= 5 (2)

Tu (1) và (2) => dang thuc xảy ra khi x= 5(TMDKXD)

19 tháng 8 2016

d/ Điều kiện xác định : \(4\le x\le6\)

 Áp dụng bđt Bunhiacopxki vào vế trái của pt : 

\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)

\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)

Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)

Vậy pt có nghiệm x = 5

19 tháng 8 2016

a/ ĐKXĐ : \(x\ge0\) 

\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)

Tới đây xét các trường hợp : 

1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)

2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)

3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)

Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\) 

6 tháng 7 2018

bài 1 :điều kiện\(4\le x\le6\) 

 ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)

\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)

bài 2 :điều kiện : \(2\le x\le4\)

ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)

25 tháng 6 2018

a) Điều kiện: \(2,5\ge x\ge1,5\)

Áp dụng bất đẳng thức cauchy, ta có:

\(VT\ge\dfrac{2x-3+1+5-2x+1}{2}=2\)

\(VP=3\left(x-2\right)^2+2\ge2\)

Đẳng thức xảy ra khi và chỉ khi x = 2

25 tháng 6 2018

b) Link tham khảo: https://diendantoanhoc.net/topic/72109-gi%E1%BA%A3i-pt-sqrt-x-4-sqrt-6-x-x2-10x-27/

18 tháng 9 2016

ĐKXĐ : \(4\le x\le6\)

Xét vế phải \(\left(1.\sqrt{6-x}+1.\sqrt{x-4}\right)^2\le\left(1^2+1^2\right)\left(6-x+x-4\right)=4\)

\(\Leftrightarrow\sqrt{6-x}+\sqrt{x-4}\le2\)

Xét vế trái : \(x^2-10x+27=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với \(\hept{\begin{cases}4\le x\le6\\x^2-10x+27=2\\\sqrt{6-x}+\sqrt{x-4}=2\end{cases}}\) \(\Leftrightarrow x=5\) (thỏa mãn)

Vậy pt có nghiệm x = 5

a: \(\Leftrightarrow\sqrt{3+\sqrt{x}}+2=9\)

\(\Leftrightarrow3+\sqrt{x}=49\)

=>căn x=46

hay x=2116

b: \(\Leftrightarrow2x^2-4x+2=36\)

\(\Leftrightarrow2x^2-4x-34=0\)

hay \(x\in\left\{1+3\sqrt{2};1-3\sqrt{2}\right\}\)

c: \(\Leftrightarrow\sqrt{x-1}-3=0\)

=>x-1=9

hay x=10

11 tháng 11 2018

pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)

<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)

<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)

<=> x = 5

18 tháng 12 2016

Bình phương liên tục 2 vế và bạn có một pt bậc 8!!!

Đùa thôi chứ cách giải nghiêm túc nè.

Nhận xét: Đoán trước \(x=5\) là nghiệm nên ta sử dụng lượng liên hợp để có nhân tử \(x-5\) 2 vế.

\(\sqrt{6-x}-1+\sqrt{x-4}-1=x^2-10x+25\)

\(\frac{5-x}{\sqrt{6-x}+1}+\frac{x-5}{\sqrt{x-4}+1}=\left(x-5\right)^2\)

Ta xét \(x\ne5\) ta còn lại \(x-5=\frac{1}{\sqrt{x-4}+1}-\frac{1}{\sqrt{6-x}+1}\)

Ta xét \(x< 5\). Khi đó \(\frac{1}{\sqrt{x-4}+1}-\frac{1}{\sqrt{6-x}+1}>0>x-5\) nên vô nghiệm.

Trường hợp \(x>5\) tương tự. Một bài toán hay!

18 tháng 12 2016

Vậy thôi chứ bài này ko cần xoắn như Trần...Đạt

Đk:...

\(VT=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\left(1\right)\)

\(VP^2=\left(6-x\right)+\left(x-4\right)+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

\(=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

\(\le2+\left(6-x\right)+\left(x-4\right)=4\) (BĐT AM-GM) 

\(\Rightarrow VP^2\le4\Rightarrow VP\le2\left(2\right)\)

Từ (1) và (2) ta có dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-10x+27=2\\\sqrt{6-x}+\sqrt{x-4}=2\end{cases}}\)\(\Leftrightarrow x=5\)