![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
2x-3=0 => x=3/2
b)
2x^2 +1 =0 => vô nghiệm
c) x^2 -25 =0 => x=5 loiaj
x=-5 nhân
d)
x^2 -25 =0 => x=5 loại
x=-5 loại
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3-0,25x=0\\ < =>x\left(x^2-0,25\right)=0\\ =>\left[{}\begin{matrix}x=0\\x^2-0,25=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=\sqrt{0,25}\end{matrix}\right.\)
b) \(x^2-10x=-25\\ < =>x^2-10x+25=0\\ < =>\left(x-5\right)^2=0\\ < =>x-5=0\\=>x=5\)
a) \(x^3-0,25x=0\)
\(x\left(x^2-0,25\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-0,25=0\)
\(\Leftrightarrow x=0\) hoặc \(x=0,25\) hoặc \(x=-0,25\)
b) \(x^2-10x=-25\)
\(\Leftrightarrow x\left(x-10\right)=-25\)
\(\Leftrightarrow x=-25\) hoặc \(\Leftrightarrow x-10=-25\)
\(\Leftrightarrow x=-25\) hoặc x=-15
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(x^2-10x=-25\)
\(\Rightarrow x^2-10+25=0\)
\(\Rightarrow x^2-2.x.5+5^2=0\)
\(\Rightarrow\left(x-5\right)^2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=0+5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
b) \(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow x.\left(x-2\right)-3.\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right).\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{2;3\right\}.\)
Chúc bạn học tốt!
a) x2−10x=−25
<=> \(x^2-10x+25=0\)
<=> \(\left(x-5\right)^2\)=0
=>\(x-5=0\)
=>\(x=5\)
b) x2−5x+6=0
<=> (x-2)(x-3)=0
=>x-2=0 hoặcx-3=0
=>x=2 hoặc x=3
c) rút gọn rồi phân tích đa thức thành nhân tử
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3-0,25x=0\)
\(\Rightarrow x^3=\dfrac{1}{4}x\)
\(\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b) \(x^2-10x=-25\)
\(\Rightarrow x^2=-25+10x\)
\(\Rightarrow\left[{}\begin{matrix}x=-25+10x\\x=-\left(-25+10x\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}10x-x=-25\\-10x-x=25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}9x=-25\\-11x=25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-25}{9}\\x=-\dfrac{25}{11}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x+5x^2=0\)
\(=>x\left(1+5x\right)=0\)
\(=>\hept{\begin{cases}x=0\\5x+1=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=\frac{-1}{5}\end{cases}}\)
b) \(x^3+x=0\)
\(=>x\left(x^2+1\right)=0\)
\(=>\hept{\begin{cases}x=0\\x^2+1=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x\in\phi\end{cases}}\)
c) \(5x\left(x-1\right)=x-1\)
\(=>5x\left(x-1\right)-x+1=0\)
\(=>5x\left(x-1\right)-\left(x-1\right)=0\)
\(=>\left(x-1\right)\left(5x-1\right)=0\)
\(=>\hept{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)
\(=>\hept{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
d) \(x^2-10x=-25\)
\(=>x^2-10x+25=0\)
\(=>\left(x-5\right)^2=0\)
\(=>x-5=0\)
\(=>x=5\)
\(a,x+5x^2=0\)
\(x.\left(1+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{5}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(x^2+x=0\) (1)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-1;0\right\}\)
2) \(x^2-10x=25\) (2)
\(\Leftrightarrow x^2-10x-25=0\)
\(\Leftrightarrow x^2-5x-5x-25=0\)
\(\Leftrightarrow x\left(x-5\right)-5\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{5\right\}\)
3) \(\left(x+2\right)^2=x+2\) (3)
\(\Leftrightarrow\left(x+2\right)^2-x-2=0\)
\(\Leftrightarrow x^2+4x+4-x-2=0\)
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+2x+x+2=0\)
\(\Leftrightarrow x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm phương trình (3) là \(S=\left\{-2;-1\right\}\)
cứ vậy nhé
Tìm x:
a, \(\dfrac{x^2-4x+4}{x-2}=1\) (x khác 2)
b,\(\dfrac{x^2-10x+25}{x^2-25}=0\) (x khác 5 và -5)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\dfrac{x^2-4x+4}{x-2}=1\) (1)
Đkxđ: \(x\ne2\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(x-2\right)^2}{x-2}=1\)
\(\Leftrightarrow x-2=1\Rightarrow x=3\)
\(b,\dfrac{x^2-10x+25}{x^2-25}=0\left(1\right)\)
ĐKXĐ: \(x\ne\pm5\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(x-5\right)^2}{\left(x+5\right)\left(x-5\right)}=0\)
\(\Leftrightarrow\dfrac{x-5}{x+5}=0\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Các câu na ná chắc nên mk làm mẫu 2 bài thui nha !
a, pt <=> x-23/24 + x-23/25 - x-23/26 - x-23/27 = 0
<=> (x-23).(1/24+1/25-1/26-1/27) = 0
<=> x-23=0 ( vì 1/24+1/25-1/26-1/27 > 0 )
<=> x=23
b, pt <=> (201-x/99 + 1)+(203-x/97 + 1)+(205-x/95 + 1) = 0
<=> 300-x/99 + 300-x/97 + 300-x/95 = 0
<=> (300-x).(1/99+1/97+1/95) = 0
<=> 300-x = 0 ( vì 1/99+1/97+1/95 > 0 )
<=> x=300
Tk mk nha
\(x^2-10x+25=0\)
\(\left(x-5\right)^2=0\) ( sử dụng hằng đẳng thức bình phương của 1 hiệu)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
vậy \(x=5\)
\(x^2-10x+25=0\)
\(x^2-2.5x+5^2=0\)
\(\left(x-5\right)^2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)