Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^3-8\left(x-1\right)\left(x^2+x+1\right)+12x^2=2x+1\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8\left(x^3-1\right)+12x^2-2x-1=0\)
\(\Leftrightarrow4x+6=0\)
\(\Leftrightarrow2\left(2x+3\right)=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\frac{-3}{2}\)
Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.
Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)
\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)
\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)
Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)
Đặt biểu thức đã cho là A.
Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)
= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))
Rút gọn triệt tiêu ta được 2A=3^64 - 1
=> A = (3^64 - 1)/2
\(3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(-2x+6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
2:
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH=12cm
b: ΔAHB vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
ΔAHC vuông tại H có HE vuông góc AC
nên AE*AC=AH^2
=>AD*AB=AE*AC
c: góc IAC+góc AED
=góc ICA+góc AHD
=góc ACB+góc ABC=90 độ
=>AI vuông góc ED
4:
a: góc BDH=góc BEH=góc DBE=90 độ
=>BDHE là hình chữ nhật
b: BDHE là hình chữ nhật
=>góc BED=góc BHD=góc A
Xét ΔBED và ΔBAC có
góc BED=góc A
góc EBD chung
=>ΔBED đồng dạng với ΔBAC
=>BE/BA=BD/BC
=>BE*BC=BA*BD
c: góc MBC+góc BED
=góc C+góc BHD
=góc C+góc A=90 độ
=>BM vuông góc ED
\(A=\left(x+y\right)^2+\left(y-x\right)^2-2\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)^2+\left(y-x\right)^2+2\left(y-x\right)\left(x+y\right)\)
\(=\left(x+y+y-x\right)^2\)
\(=\left(2y\right)^2\)Thay \(y=\frac{1}{2}\)ta được:
\(\left(2.\frac{1}{2}\right)^2\)
\(=1\)
Vậy \(A=1\)tại \(x=2019\)và \(y=\frac{1}{2}\)
A = (x + y)^2 + (y - x)^2 - 2(x - y)(x + y)
A = x^2 + 2xy + y^2 + x^2 - 2xy + y^2 - 2x^2 + 2y^2
A = (x^2 + x^2 - 2x^2) + (2xy - 2xy) + (y^2 + y^2 + 2y^2)
A = 4y^2 (1)
Thay x = 2019 và y = 1/2 vào (1), ta có:
(4.1/2)^2 = 4
\(\Leftrightarrow\left|x^2-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=3\\x^2-1=-3\end{matrix}\right.\Leftrightarrow x\in\left\{2;-2\right\}\)
\(\left|x^2-1\right|=\left|-3\right|\\ \Leftrightarrow\left[{}\begin{matrix}x^2-1=3\\x^2-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=-2\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=\pm2\)