Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{x}{1}=\frac{y}{2}<=>y=2x\)
Mặt khác
\(x^2+y^2=20\)
<=>\(x^2+\left(2x\right)^2=20\)
<=>\(5x^2=20\)
<=>\(x^2=4\)
<=>\(x=4;-4\)
Nếu thấy bài làm của mình đúng thì tick nha bạn,mình xin chân thành cảm ơn.
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
a) Ta có \(\hept{\begin{cases}x^2\ge0\forall x\\\left(y-\frac{1}{3}\right)^2\ge0\forall y\end{cases}\Rightarrow}x^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-\frac{1}{3}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{3}\end{cases}}\)
Vậy x = 0 ; y = 1/3 là giá trị cần tìm
b) Ta có : \(\hept{\begin{cases}\left|2x-1\right|\ge0\forall x\\\left|x-3y+2\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|2x-1\right|+\left|x-3y+2\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\x-3y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\-3y=-\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vạy \(x=y=\frac{1}{2}\)là giá trị cần tìm
a) Ta có : \(\hept{\begin{cases}x^2\ge0\forall x\\\left(y-\frac{1}{3}\right)^2\ge0\forall y\end{cases}}\Rightarrow x^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x,y\)
Kết hợp với đề bài => Chỉ xảy ra trường hợp x2 + ( y - 1/3 )2 = 0
=> x = 0 ; y = 1/3
b) \(\hept{\begin{cases}\left|2x-1\right|\\\left|x-3y+2\right|\end{cases}\ge}0\forall x,y\Rightarrow\left|2x-1\right|+\left|x-3y+2\right|\ge0\forall x,y\)
Dấu "=" xảy ra khi x = 1/2 ; y = 5/6
Ta có:\(\frac{x}{1}=\frac{y}{2}=\frac{x^2}{1}=\frac{y^2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{1}=\frac{y}{2}=\frac{x^2}{1}=\frac{y^2}{4}=\frac{x^2+y^2}{1+4}=\frac{20}{5}=4\)
\(\Rightarrow\hept{\begin{cases}x=4.1=4\\y=4.2=8\end{cases}}\)
Vậy x+y=4+8=12
Ta có : x^2 + y^2 = 20
1^2 + 2^2 = 5
20/5 = 4
x = 4 . 1 = 4
y = 4 . 2 = 8
x + y = 4 + 8 = 12
Ta có (x-1)2>0
(y+2)2>0
=>(x-1)2+(y+2)2>0 mà theo bài ra (x-1)2+(y+2)2<0
=>(x-1)2+(y+2)2=0
=>x-1=0=>x=1;y+2=0=>y=-2
Vậy x=1;y=-2