Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right).\left(x+2\right)\left(x+4\right)-40=0\)
\(\Leftrightarrow\left(x^2+6x+5\right).\left(x^2+6x+8\right)-40=0\)
Đặt \(a=x^2+6x+6\) ta có:
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)-40=0\)
\(\Leftrightarrow a^2+a-2-40=0\)
\(\Leftrightarrow a^2-6x+7x-42=0\)
\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+6=6\\x^2+6x+6=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
(\(x^2+6x+13=\left(x+3\right)^2+4>0\left(loại\right)\))
Vậy.................
3)
\(\left|x+4\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=3-2x\\x+4=-3+2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=7\end{matrix}\right.\)
Vậy..........
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)
\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)
\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)
\(A=-12x\)
\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)
\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)
\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)
\(B=-3x-12\)
Câu C tương tự.
Chúc bạn học tốt!!!
A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)
A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)
A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)
A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)
A = \(-4x^2-12x-8+4x^2+8=-12x\)
b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)
B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)
B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)
B = \(-6x^2-3x-6\)
2, đặt x2+x=a ta có:
a+4a-12=0\(\Leftrightarrow\)( a+2.2a+4)-16=0 \(\Leftrightarrow\) (a+2)2-42=0 \(\Leftrightarrow\)(a-2)(a+6)=0
\(\left[\begin{matrix}a-2=0\\a+6+0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}a=2\\a=-6\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}x^2+x-2=0\\x^2+x+6=0\left(vl\right)\end{matrix}\right.\)
\(\Leftrightarrow\)x2-x+2x-2=0\(\Leftrightarrow\)x(x-1)+2(x-1)=0\(\Leftrightarrow\left[\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
vậy pt có tập nghiệm là S=\(\left\{-2;1\right\}\)
3, (x+1) (x+2) (x+4) (x+5)= 40
\(\Leftrightarrow\)(x+1)(x+5)(x+2)(x+4)=40
\(\Leftrightarrow\)(x2+6x+5)(x2+6x+8)-40=0
đặt x2+6x+5=y ta có
y(y+3)-40=0\(\Leftrightarrow\)y2+2.\(\frac{3}{2}y\)+\(\frac{9}{4}\)-\(\frac{169}{4}\)=0\(\Leftrightarrow\)(y+\(\frac{3}{2}\))2-(\(\frac{13}{2}\))2=0\(\Leftrightarrow\)(y-5)(y+8)=0\(\Leftrightarrow\left[\begin{matrix}y-5=0\\y+8=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}y=5\\y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x^2+6x+5=5\\x^2+6x+5=-8\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x^2+6x=0\\x^2+6x+13=0\left(vl\right)\end{matrix}\right.\)\(\Leftrightarrow\)x(x+6)=0\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
vậy pt có tập nghiêm là S=\(\left\{-6;0\right\}\)
2) (x2 +x )+4 (x2 +x) -12= 0
đặt x2+x=a rồi thay vào , biến đổi thành HDT bình phương là đc
3) (x+1) (x+2) (x+4) (x+5)= 40
nhân (x+1)(x+5)và (x+2)(x+4)rồi đặt biến phụ rồi làm giống câu trên (chuyển 40 sang vế phải)
Bài 1:
b: \(=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)
\(=8x^2+40x+50+48x^2-3\)
\(=56x^2+40x+47\)
Bài 2:
b: \(\Leftrightarrow3x-3+9x-18=2x-6+4x-4\)
=>12x-21=6x-10
=>6x=11
hay x=11/6
a) ta có:
(x-3)(x-5)(x-6)(x-10)=24x2
<=> \(\left[\left(x-3\right)\left(x-10\right)\right]\left[\left(x-5\right)-\left(x-6\right)\right]=24x^2\)
<=> \(\left(x^2-13x+30\right)\left(x^2-11x+30\right)=24x^2\)
<=> \(\left(x^2-12x+20-x\right)\left(x^2-12x+30+x\right)=24x^2\)
<=> \(\left(x^2-12x+30\right)^2-x^2=24x^2\)
<=> \(\left(x^2-12x+30\right)^2-x^2-24x^2=0\)
<=> \(\left(x^2-12x+30\right)^2-25x^2=0\)
<=> \(\left(x^2-17x+30\right)\left(x^2-7x+30\right)=0\)
mà x2-7x+30=(x-\(\dfrac{7}{2}\))2+\(\dfrac{71}{4}\)> 0
=> x2-17x+30=0
<=> (x-15)(x-2)=0
=>\(\left[{}\begin{matrix}x-15=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=2\end{matrix}\right.\)
Vậy S=\(\left\{15;2\right\}\)
b) ta có:
(x+1)(x+2)(x+4)(x+5)=40
<=> \(\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=40\)
<=> (x2+6x+5)(x2+6x+8)=40
<=> (x2+6x+6,5-1,5)(x2+6x+6,5+1,5)=40
<=> (x2+6x+6,5)2 _ 2,25=40
<=> (x2+6x+6,5)2 _ 42,25=0
<=> (x2+6x+6,5-6,5)(x2+6x+6,5+6,5)=0
<=> (x2+6x)(x2+6x+13)=0
mà x2+6x+13=(x+3)2+4>0
=> x2+6x=0
<=> x(x+6)=0
=>\(\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy S=\(\left\{0;-6\right\}\)
b)
\(\Rightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)=40\)
\(\Rightarrow\left(x^2+5x+x+5\right)\left(x^2+4x+2x+8\right)=40\)
\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt: \(a=x^2+6x+5\)
\(\Rightarrow a.\left(a+3\right)=40\)
Mà:\(40=5.8\)
\(\Rightarrow a=5\)
Học tốt !!! :)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)=40\)
Đặt \(x+3=t\) Phương trình tương đương với
\(\left(t-2\right)\left(t-1\right)t\left(t+1\right)\left(t+2\right)=40\)
\(\Leftrightarrow\left(t^2-1\right)\left(t^2-4\right)t=40\)
\(\Leftrightarrow\left(t^4-5t^2+4\right)t=40\)
\(\Leftrightarrow t^5-5t^3+4t-40=0\)
Số xấu,không trình bày tại đây
E=x5-5x4+5x3-5x2+5x-1
=x5-4x4+x3-4x2+x-x4+4x3-x2+4x-1
=x(x4-4x3+x2-4x+1)-(x4-4x3+x2-4x+1)
=(x-1)(x4-4x3+x2-4x+1)
Tại x=4 ta có:
E=(4-1)(44-4*43+42-4*4+1)
=3*(256-256+16-16+1)
=3*1
=3