
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


2.
ĐKXĐ: \(x\geq -2\)
Ta có : \(\sqrt{x+9}=5-\sqrt{2x+4}\)
\(\Leftrightarrow (\sqrt{x+9}-3)+(\sqrt{2x+4}-2)=0\)
\(\Leftrightarrow \frac{x}{\sqrt{x+9}+3}+\frac{2x}{\sqrt{2x+4}+2}=0\) (liên hợp)
\(\Leftrightarrow x(\frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2})=0\)
Với mọi $x\geq -2$, ta thấy \(\frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2}>0\)
\(\Rightarrow \frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2}\neq 0\)
Do đó: \(x=0\) là nghiệm duy nhất của PT
3. ĐKXĐ: \(x\geq -1\)
\(x^2+\sqrt{x+1}=1\)
\(\Leftrightarrow (x^2-1)+\sqrt{x+1}=0\)
\(\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0\)
\(\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x+1}=0(1)\\ (x-1)\sqrt{x+1}+1=0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow x=-1\) (thỏa mãn)
Với \((2)\Leftrightarrow (x-1)\sqrt{x+1}=-1\Rightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ (x-1)^2(x+1)=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ (x-1)^2(x+1)=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ x(x^2-x-1)=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-1;0;\frac{1-\sqrt{5}}{2}\right\}\)
4.
ĐKXĐ: \(x\geq \frac{3}{4}\)
\(x-\sqrt{4x-3}=2\)
\(\Leftrightarrow (x-7)-(\sqrt{4x-3}-5)=0\)
\(\Leftrightarrow (x-7)-\frac{4x-3-5^2}{\sqrt{4x-3}+5}=0\)
\(\Leftrightarrow (x-7)-\frac{4(x-7)}{\sqrt{4x-3}+5}=0\)
\(\Leftrightarrow (x-7)\left(1-\frac{4}{\sqrt{4x-3}+5}\right)=0\)
\(\Leftrightarrow (x-7).\frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}=0\)
Dễ thấy \(\frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}>0, \forall x\geq \frac{3}{4}\Rightarrow \frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}\neq 0\)
Do đó: \(x-7=0\Leftrightarrow x=7\) là nghiệm duy nhất của pt
5.
ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow \sqrt{2x+15}=-x\)
\(\Rightarrow \left\{\begin{matrix} -x\geq 0\\ 2x+15=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-15=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ (x-5)(x+3)=0\end{matrix}\right.\Rightarrow x=-3\)
Vậy..........
6. ĐKXĐ: \(x^2-6x+7\geq 0\)
PT \(\Leftrightarrow (x^2-6x+7)+\sqrt{x^2-6x+7}-12=0\)
Đặt \(\sqrt{x^2-6x+7}=a(a\geq 0)\) thì pt trở thành:
\(a^2+a-12=0\)
\(\Leftrightarrow (a-3)(a+4)=0\Rightarrow \left[\begin{matrix} a=3\\ a=-4\end{matrix}\right.\)
Vì $a\geq 0$ nên $a=3$
\(\Leftrightarrow \sqrt{x^2-6x+7}=3\)
\(\Leftrightarrow x^2-6x+7=9\)
\(\Leftrightarrow x^2-6x-2=0\Rightarrow x=3\pm \sqrt{11}\) (đều thỏa mãn)
Vậy........

Giải PT
a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)
\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(12\sqrt{x} = 3\)
\(\Leftrightarrow\) \(\sqrt{x} = 4 \)
\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)
\(\Leftrightarrow\) \(x=16\)
b) \(\sqrt{x^2-2x-1} - 3 =0\)
\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)
\(\Leftrightarrow\) \(|x-1|=3\)
* \(x-1=3\)
\(\Leftrightarrow\) \(x=4\)
* \(-x-1=3\)
\(\Leftrightarrow\) \(-x=4\)
\(\Leftrightarrow\) \(x=-4\)
c) \(\sqrt{4x^2+4x+1} - x = 3\)
<=> \(\sqrt{(2x+1)^2} = 3+x\)
<=> \(|2x+1|=3+x\)
* \(2x+1=3+x\)
<=> \(2x-x=3-1\)
<=> \(x=2\)
* \(-2x+1=3+x\)
<=> \(-2x-x = 3-1\)
<=> \(-3x=2\)
<=> \(x=\dfrac{-2}{3}\)
d) \(\sqrt{x-1} = x-3\)
<=> \(\sqrt{(x-1)^2} = (x-3)^2\)
<=> \(|x-1| = x^2-2.x.3+3^2\)
<=> \(|x-1| = x-6x+9\)
<=> \(|x-1| = -5x+9\)
* \(x-1= -5x+9\)
<=> \(x+5x = 9+1\)
<=> \(6x=10\)
<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)
* \(-x-1 = -5x+9\)
<=> \(-x+5x = 9+1\)
<=> \(4x = 10\)
<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)

6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)

Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)

a)\(\sqrt{x+1}\left(x+4\right)=\left(x+18\right)\sqrt{6+x}-3x-40\)
\(pt\Leftrightarrow\sqrt{x+1}\left(x+4\right)-14=\left(x+18\right)\sqrt{6+x}-63-3x-9\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)^2-196}{\sqrt{x+1}\left(x+4\right)+14}=\frac{\left(x+18\right)^2\left(x+6\right)-3969}{\left(x+18\right)\sqrt{6+x}+63}-3\left(x-3\right)\)
\(\Leftrightarrow\frac{x^3+9x^2+24x-180}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^3+42x^2+540x-2025}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+12x+60\right)}{\sqrt{x+1}\left(x+4\right)+14}-\frac{\left(x-3\right)\left(x^2+45x+675\right)}{\left(x+18\right)\sqrt{6+x}+63}+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+12x+60}{\sqrt{x+1}\left(x+4\right)+14}-\frac{x^2+45x+675}{\left(x+18\right)\sqrt{6+x}+63}+3\right)=0\)
Pt trong ngoặc to to kia vô nghiệm
Suy ra x=3
b)\(3\left(\sqrt{x+9}-\sqrt{x+1}\right)=4-4x\)
\(pt\Leftrightarrow\sqrt{x+9}-\sqrt{x+1}=\frac{4-4x}{3}\)
\(\Leftrightarrow2x+10-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}\)
\(\Leftrightarrow-2\sqrt{\left(x+1\right)\left(x+9\right)}=\frac{16x^2-32x+16}{9}-\left(2x+10\right)\)
\(\Leftrightarrow4\left(x+1\right)\left(x+9\right)=\frac{256x^4-1600x^3+132x^2+7400x+5476}{81}\)
\(\Leftrightarrow\frac{-64\left(x^2-5x-5\right)\left(4x^2-5x-8\right)}{81}=0\)
mỗi lần bình phương tự rút ra điều kiện mà khử nghiệm nhé :v
đè có sai ko nhỉ
\(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
đk: \(x\ge0;x^2-4x+1\ge0\)
Bình phương 2 vế pt ta có:
\(x^2+2x+1+2\left(x+1\right)\sqrt{x^2-4x+1}+x^2-4x+1=9x\)
\(\Leftrightarrow2x^2-11x+2+2\sqrt{\left(x^2+2x+1\right)\left(x^2-4x+1\right)}=0\)
giả sử \(2x^2-11x+2=m\left(x^2+2x+1\right)+n\left(x^2-4x+1\right)\Rightarrow\hept{\begin{cases}m+n=2\\2m-4n=-11\\m+n=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-\frac{1}{2}\\n=\frac{5}{2}\end{cases}}}\)
pt trở thành: \(-\frac{1}{2}\left(x^2+2x+1\right)+\frac{5}{2}\left(x^2-4x+1\right)+2\sqrt{\left(x^2+2x+1\right)\left(x^2-4x+1\right)}=0\)
Chia pt cho \(x^2+2x+1>0\) ta được:
\(-1+5\left(\frac{x^2-4x+1}{x^2+2x+1}\right)+4\sqrt{\left(\frac{x^2-4x+1}{x^2+2x+1}\right)}=0\)
Đặt \(t=\sqrt{\left(\frac{x^2-4x+1}{x^2+2x+1}\right)}\ge0\)
Ta có: \(5t^2+4t-1=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=\frac{1}{5}\end{cases}}\Leftrightarrow t=\frac{1}{5}\Leftrightarrow\left(\frac{x^2-4x+1}{x^2+2x+1}\right)=\frac{1}{25}\)
\(\Leftrightarrow24x^2-102x+24=0\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=4\end{cases}}\)